In the process of digitization of cultural heritage objects with differentiated shininess it is difficult to reproduce faithfully the aesthetic of the original. The aim of the presented research is to address simultaneous capturing of shape, color and reflection features in order to digitally reproduce the appearance of the real object. We focus our work on a study of a ceramic furnace tile which exhibits complex shape, color and varying reflection properties. To achieve the goal we use a specially designed automated acquisition setup and provide a dedicated data processing pipeline. The collected geometry conforms to metrological uncertainty validation and the diffuse component is colorimetrically calibrated. The reflection properties are measurement-based, modeled with Blinn-Phong and visualized with an OpenGL shader. Close integration of capturing devices and a single data processing pipeline allows to fully utilize multidimensional raw data in order to get faithful final appearance model.