Many areas of forensics are moving away from the notion of classifying evidence simply as a match or non-match. Instead, some use score-based likelihood ratios (SLR) to quantify the similarity between two pieces of evidence, such as a fingerprint obtained from a crime scene and a fingerprint obtained from a suspect. We apply trace-anchored score-based likelihood ratios to the camera device identification problem. We use photo-response non-uniformity (PRNU) as a camera fingerprint and one minus the normalized correlation as a similarity score. We calculate trace-anchored SLRs for 10,000 images from seven camera devices from the BOSSbase image dataset. We include a comparison between our results the universal detector method.