Stereoscopic 3D remote vision system (sRVS) design can be challenging. The components often interact such that changing one parameter will cause unintended distortions in the perceptual image space. For example, increasing camera convergence to reduce vergence-accommodation mismatch will have the unintended effect of increasing depth compression. In this study, we investigated the trade-offs between changes in two parameters: viewing distance and camera toe-in. Participants used a simulated telerobotic arm to complete a precision depth matching task in an sRVS environment. Both a comfort questionnaire (subjective) and eye-tracking metrics (objective) were used as indicators of visual stress. The closer viewing distance increased both depth matching performance and objective measures of visual stress, demonstrating the inherent trade-offs associated with many sRVS design variables. The camera toe-in had no effect on either user performance or comfort. While these results suggest that small amounts of camera toe-in may be more tolerable than larger manipulations of viewing distance, the consequences of both should be carefully considered when designing an sRVS.