Recent advances in convolutional neural networks and vision transformers have brought about a revolution in the area of computer vision. Studies have shown that the performance of deep learning-based models is sensitive to image quality. The human visual system is trained to infer semantic information from poor quality images, but deep learning algorithms may find it challenging to perform this task. In this paper, we study the effect of image quality and color parameters on deep learning models trained for the task of semantic segmentation. One of the major challenges in benchmarking robust deep learning-based computer vision models is lack of challenging data covering different quality and colour parameters. In this paper, we have generated data using the subset of the standard benchmark semantic segmentation dataset (ADE20K) with the goal of studying the effect of different quality and colour parameters for the semantic segmentation task. To the best of our knowledge, this is one of the first attempts to benchmark semantic segmentation algorithms under different colour and quality parameters, and this study will motivate further research in this direction.
Recent advances in convolutional neural networks and vision transformers have brought about a revolution in the area of computer vision. Studies have shown that the performance of deep learning-based models is sensitive to image quality. The human visual system is trained to infer semantic information from poor quality images, but deep learning algorithms may find it challenging to perform this task. In this paper, we study the effect of image quality and color parameters on deep learning models trained for the task of semantic segmentation. One of the major challenges in benchmarking robust deep learning-based computer vision models is lack of challenging data covering different quality and colour parameters. In this paper, we have generated data using the subset of the standard benchmark semantic segmentation dataset (ADE20K) with the goal of studying the effect of different quality and colour parameters for the semantic segmentation task. To the best of our knowledge, this is one of the first attempts to benchmark semantic segmentation algorithms under different colour and quality parameters, and this study will motivate further research in this direction.