Coherent anti-Stokes Raman scattering (CARS) microspectroscopy is a powerful tool for label-free cell imaging thanks to its ability to acquire a rich amount of information. An important family of operations applied to such data is multivariate curve resolution (MCR). It aims to find main components of a dataset and compute their spectra and concentrations in each pixel. Recently, autoencoders began to be studied to accomplish MCR with dense and convolutional models. However, many questions, like the results variability or the reconstruction metric, remain open and applications are limited to hyperspectral imaging. In this article, we present a nonlinear convolutional encoder combined with a linear decoder to apply MCR to CARS microspectroscopy. We conclude with a study of the result variability induced by the encoder initialization.
In the past few decades, there has been intensive research concerning the Unmixing of hyperspectral images. Some methods such as NMF, VCA, and N-FINDR have become standards since they show robustness in dealing with the unmixing of hyperspectral images. However, the research concerning the unmixing of multispectral images is relatively scarce. Thus, we extend some unmixing methods to the multispectral images. In this paper, we have created two simulated multispectral datasets from two hyperspectral datasets whose ground truths are given. Then we apply the unmixing methods (VCA, NMF, N-FINDR) to these two datasets. By comparing and analyzing the results, we have been able to demonstrate some interesting result for the utilization of VCA, NMF, and N-FINDR with multispectral datasets. Besides, this also demonstrates the possibilities in extending these unmixing methods to the field of multispectral imaging.