In the past decades, developments in the field of computer vision have made both the software and hardware more capable and more easily accessible. This has enabled otherwise complex vision systems to be used in other fields, such as autonomous robotics. Although vision systems in the visible light spectrum are commonplace in robotics nowadays, the thermal spectrum is still rarely used, even though it offers certain advantages. A thermal camera can sense the temperature of objects, is independent of illumination and can actually see through heavy smoke and fog. This makes it a useful tool in particular in the field of rescue robotics, where poor vision conditions are to be expected. In this paper, the feasibility of using two thermal cameras in a stereo vision setup to map indoor scenes is to be examined. It is meant to allow an autonomous robot to perceive its indoor surroundings as a 3D space, even in poor vision conditions. The biggest challenges are the calibration of thermal cameras and the proper filtering of the raw image and the resulting disparity map. Simple and easily implemented solutions are proposed for each of these issues.