The internal structure of the snow and its reflectance function play a major contribution in its appearance. We investigate the snow reflectance model introduced by Kokhanovsky and Zege in a close-range imaging scale. By monitoring the evolution of melting snow through time using hyperspectral cameras in a laboratory, we estimate snow grain sizes from 0.24 to 8.49 mm depending on the grain shape assumption chosen. Using our experimental results, we observe differences in the reconstructed reflectance spectra with the model regarding the spectra's shape or magnitude. Those variations may be due to our data or to the grain shape assumption of the model. We introduce an effective parameter describing both the snow grain size and the snow grain shape, to give us the opportunity to select the adapted assumption. The computational technique is ready, but more ground truths are required to validate the model.