We review the design of the SSIM quality metric and offer an alternative model of SSIM computation, utilizing subband decomposition and identical distance measures in each subband. We show that this model performs very close to the original and offers many advantages from a methodological standpoint. It immediately brings several possible explanations of why SSIM is effective. It also suggests a simple strategy for band noise allocation optimizing SSIM scores. This strategy may aid the design of encoders or pre-processing filters for video coding. Finally, this model leads to more straightforward mathematical connections between SSIM, MSE, and SNR metrics, improving previously known results.
This paper presents a prototype linear response single exposure CMOS image sensor with two-stage lateral overflow integration trench capacitors (LOFITreCs) exhibiting over 120dB dynamic range with 11.4Me- full well capacity (FWC) and maximum signal-to-noise ratio (SNR) of 70dB. The measured SNR at all switching points were over 35dB thanks to the proposed two-stage LOFITreCs.
The automotive industry formed the initiative IEEE-P2020 to jointly work on key performance indicators (KPIs) that can be used to predict how well a camera system suits the use cases. A very fundamental application of cameras is to detect object contrasts for object recognition or stereo vision object matching. The most important KPI the group is working on is the contrast detection probability (CDP), a metric that describes the performance of components and systems and is independent from any assumptions about the camera model or other properties. While the theory behind CDP is already well established, we present actual measurement results and the implementation for camera tests. We also show how CDP can be used to improve low light sensitivity and dynamic range measurements.