Can a mobile camera see better through display? Under Display Camera (UDC) is the most awaited feature in mobile market in 2020 enabling more preferable user experience, however, there are technological obstacles to obtain acceptable UDC image quality. Mobile OLED panels are struggling to reach beyond 20% of light transmittance, leading to challenging capture conditions. To improve light sensitivity, some solutions use binned output losing spatial resolution. Optical diffraction of light in a panel induces contrast degradation and various visual artifacts including image ghosts, yellowish tint etc. Standard approach to address image quality issues is to improve blocks in the imaging pipeline including Image Signal Processor (ISP) and deblur block. In this work, we propose a novel approach to improve UDC image quality - we replace all blocks in UDC pipeline with all-in-one network – UDC d^Net. Proposed solution can deblur and reconstruct full resolution image directly from non-Bayer raw image, e.g. Quad Bayer, without requiring remosaic algorithm that rearranges non-Bayer to Bayer. Proposed network has a very large receptive field and can easily deal with large-scale visual artifacts including color moiré and ghosts. Experiments show significant improvement in image quality vs conventional pipeline – over 4dB in PSNR on popular benchmark - Kodak dataset.
Latest trend in image sensor technology allowing submicron pixel size for high-end mobile devices comes at very high image resolutions and with irregularly sampled Quad Bayer color filter array (CFA). Sustaining image quality becomes a challenge for the image signal processor (ISP), namely for demosaicing. Inspired by the success of deep learning approach to standard Bayer demosaicing, we aim to investigate how artifacts-prone Quad Bayer array can benefit from it. We found that deeper networks are capable to improve image quality and reduce artifacts; however, deeper networks can be hardly deployed on mobile devices given very high image resolutions: 24MP, 36MP, 48MP. In this article, we propose an efficient end-to-end solution to bridge this gap—a duplex pyramid network (DPN). Deep hierarchical structure, residual learning, and linear feature map depth growth allow very large receptive field, yielding better details restoration and artifacts reduction, while staying computationally efficient. Experiments show that the proposed network outperforms state of the art for standard and Quad Bayer demosaicing. For the challenging Quad Bayer CFA, the proposed method reduces visual artifacts better than state-of-the-art deep networks including artifacts existing in conventional commercial solutions. While superior in image quality, it is 2–25 times faster than state-of-the-art deep neural networks and therefore feasible for deployment on mobile devices, paving the way for a new era of on-device deep ISPs.