Applications ranging from simple visualization to complex design require 3D models of indoor environments. This has given rise to advancements in the field of automated reconstruction of such models. In this paper, we review several state-of-the-art metrics proposed for geometric comparison of 3D models of building interiors. We evaluate their performance on a real-world dataset and propose one tailored metric which can be used to assess the quality of the reconstructed model. In addition, the proposed metric can also be easily visualized to highlight the regions or structures where the reconstruction failed. To demonstrate the versatility of the proposed metric we conducted experiments on various interior models by comparison with ground truth data created by expert Blender artists. The results of the experiments were then used to improve the reconstruction pipeline.