The critical flicker fusion (CFF) is the frequency of changes at which a temporally periodic light will begin to appear completely steady to an observer. This value is affected by several visual factors, such as the luminance of the stimulus or its location on the retina. With new high dynamic range (HDR) displays, operating at higher luminance levels, and virtual reality (VR) displays, presenting at wide fields-of-view, the effective CFF may change significantly from values expected for traditional presentation. In this work we use a prototype HDR VR display capable of luminances up to 20,000 cd/m^2 to gather a novel set of CFF measurements for never before examined levels of luminance, eccentricity, and size. Our data is useful to study the temporal behavior of the visual system at high luminance levels, as well as setting useful thresholds for display engineering.