The usefulness of mobile devices has increased greatly in recent years allowing users to perform more tasks in daily life. Mobile devices and applications provide many benefits for users, perhaps most significantly is the increased access to point-of-use tools, navigation, and alert systems. This paper presents a prototype of a cross-platform mobile augmented reality (AR) system with the core purpose of finding a better means to keep the campus community secure and connected. The mobile AR System consists of four core functionalities – an events system, a policing system, a directory system, and a notification system. The events system keeps the community up-to-date on current events that are happening or will be happening on campus. The policing system allows the community to stay in arms reach of campus resources that will allow them to stay secure. The directory system serves as a one-stop-shop for campus resources, ensuring that staff, faculty, and students will have a convenient and efficient means of accessing pertinent information on the campus departments. The mobile augmented reality system includes integrated guided navigation system that users can use to get directions to various destinations on campus. The various destinations are different buildings and departments on campus. This mobile augmented reality application will assist the students and visitors on campus to efficiently navigate the campus as well as send alert and notifications in case of emergencies. This will allow campus police to respond to the emergencies in a quick and timely manner. The mobile AR system was designed using Unity Game Engine and Vuforia Engine for object detection and classification. Google Map API was integrated for GPS integration in order to provide location-based services. Our contribution lies in our approach to create a user specific customizable navigational and alert system in order to improve the safety of the users at their workplace. Specifically, the paper describes the design and implementation of the proposed mobile AR system and reports the results of the pilot study conducted to evaluate their perceived ease-of-use, and usability.
The method of loci (memory palace technique) is a learning strategy that uses visualizations of spatial environments to enhance memory. One particularly popular use of the method of loci is for language learning, in which the method can help long-term memory of vocabulary by allowing users to associate location and other spatial information with particular words/concepts, thus making use of spatial memory to assist memory typically associated with language. Augmented reality (AR) and virtual reality (VR) have been shown to potentially provide even better memory enhancement due to their superior visualization abilities. However, a direct comparison of the two techniques in terms of language-learning enhancement has not yet been investigated. In this presentation, we present the results of a study designed to compare AR and VR when using the method of loci for learning vocabulary from a second language.
Volumetric video is becoming easier to capture and display with the recent technical developments in the acquisition, and display technologies. Using point clouds is a popular way to represent volumetric video for augmented or virtual reality applications. This representation, however, requires a large number of points to achieve a high quality of experience and needs compression before storage and transmission. In this paper, we study the subjective and objective quality assessment results for volumetric video compression, using a state-of-the-art compression algorithm: MPEG Point Cloud Compression Test Model Category 2 (TMC2). We conduct subjective experiments to find the perceptual impacts on compressed volumetric video with different quantization parameters and point counts. Additionally, we find the relationship between the state-of-the-art objective quality metrics and the acquired subjective quality assessment results. To the best of our knowledge, this study is the first to consider TMC2 compression for volumetric video represented as coloured point clouds and study its effects on the perceived quality. The results show that the effect of input point counts for TMC2 compression is not meaningful, and some geometry distortion metrics disagree with the perceived quality. The developed database is publicly available to promote the study of volumetric video compression.
We propose a virtual-image head-up display (HUD) based on the super multiview (SMV) display technology. Implementation-wise, the HUD provides a compact solution, consisting of a thin form-factor SMV display and a combiner placed on the windshield of the vehicle. Since the utilized display is at most few centimeters thick, it does not need extra installation space that is usually required by most of the existing virtual image HUDs. We analyze the capabilities of the proposed system in terms of several HUD related quality factors such as resolution, eyebox width, and target image depth. Subsequently, we verify the analysis results through experiments carried out using our SMVHUD demonstrator. We show that the proposed system is capable of visualizing images at the typical virtual image HUD depths of 2–3m, in a reasonably large eyebox, which is slightly over 30cm in our demonstrator. For an image at the target virtual image depth of 2.5m, the field of view of the developed system is 11°x16° and the spatial resolution is around 240x60 pixels in vertical and horizontal directions, respectively. There is, however, plenty of room for improvement regarding the resolution, as we actually utilize an LCD at moderate resolution (216ppi) and off-the-shelf lenticular sheet in our demonstrator.
Technology in education can influence students to learn with enthusiasm and can motivate them, leading to an effective process of learning. Researchers have identified the problem that technology will create a passive learning process if the technology used does not promote critical thinking, meaning-making or metacognition. Since its introduction, augmented reality (AR) has been shown to have good potential in making the learning process more active, effective and meaningful. This is because its advanced technology enables users to interact with virtual and real-time applications and brings the natural experiences to the user. In addition, the merging of AR with education has recently attracted research attention because of its ability to allow students to be immersed in realistic experiences. Therefore, this thesis paper is based on the research that has been conducted on AR. The review describes the application of AR on primary education using individual “topic cards” for different topics of primary school syllabus. The review of the results of the research shows that, overall, AR technologies have a positive result and potentiality that can be adapted in education. The review also indicates the advantages and limitations of AR which could be addressed in future research.