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Abstract
Solid-contact nitrate sensors have wide applications in

agriculture. In manufacturing, fabrication is an essential step
and strongly affects the sensor performance. We focus on
controlling the fabrication process to develop an economical
thin-film nitrate sensor with an ion-selective membrane (ISM).
However, direct long-time measurement of sensor performance
for monitoring fabrication is expensive and costs human labor.
Thus, in this work, we propose an automatic system to predict
the temporal potentiometric response based on non-contact im-
ages acquired in real time. Our prediction systems are generated
by exploiting image-processing techniques and machine learn-
ing approaches. To improve the prediction accuracy, we also
fuse manufacturing factors to the image inputs. The comparison
of prediction performance with different inputs also helps us to
understand their effects on the fabrication process.

Introduction
Nitrate sensors have been widely used to monitor soil condi-

tions in real time. The Scalable Manufacturing of Aware and Re-
sponsive Thin Films (SMART) [1] consortium is developing an
inexpensive mass-produced thin-film potentiometric nitrate sen-
sor that can be manufactured with a roll-to-roll system. However,
in the fabrication process of the nitrate sensor, a challenge is that
the nonuniform coating of the ion-selective membrane (ISM) [2]
is inevitable and affects the sensor performance a lot. Thus, we
develop prediction systems to monitor the fabrication process ef-
ficiently.

Fig. 1 shows a 3D model of the SMART nitrate sensor. The
electrode of the nitrate sensor is printed on a polyethylene tereph-
thalate (PET) substrate with a coated ISM layer, and silicon pas-
sivation layer. The region of our interest is the area where the
ISM contacts the electrode, which is called active region. It is
worth mentioning that a conventional sensor performance anal-
ysis needs to put the sensor’s active region in a nitrate solution
and record the potentiometric response for around 24 hours. It
is expensive and time-consuming to measure all the sensors indi-
vidually to determine their performance metrics. To address this
problem, a novel approach of exploiting machine learning tech-
niques, which have powerful abilities of data analysis and model
construction, is proposed to efficiently monitor and calibrate the
fabrication process.

Figure 1. 3D model of the SMART nitrate sensor.

*Research supported by the SMART Films consortium
(https://engineering.purdue.edu/SMART-consortium).

In our previous work on image-based quality assurance for
fabricated nitrate sensors [3], we realized the prediction of the
end-time potential voltage of the measured potentiometric re-
sponse based on a captured active-region image. The previous
prediction verified the physical assumption that a relationship
exists between the sensor images and sensor performance. How-
ever, the single value of the end-time voltage presents only lim-
ited information about the overall potentiometric response of the
sensor. Also, we mentioned that the accuracy of the prediction
has the potential to be improved.

In this paper, we continue to develop the prediction based
on an active-region image. We exploit both traditional machine
learning and deep learning to generate the image features and
learn the non-linear relationships between the feature representa-
tions and the sensor performance curve. In our traditional ma-
chine learning approach, a local binary pattern (LBP) [4] de-
scriptor is used to extract 1D texture features from the image.
Then, we leverage support vector regression (SVR) [5] to find the
non-linear relationship between the image features and the sen-
sor performance metrics. Since convolutional neural networks
(CNNs) have demonstrated their abilities to extract meaningful
image representations and learn non-linear functions [6], we also
implement a CNN to realize the prediction. In addition, we no-
tice that there are some variations in manufacturing settings in the
fabrication process within our dataset. According to the theoret-
ical analysis, the thickness of the ISM from the sensor manufac-
turing process largely affects the ion-selective electrode’s sensor
performance [7]. In this paper, besides using the active-region
images as inputs, we also fuse manufacturing factors to improve
the prediction systems.

In particular, our contributions in this work are the follow-
ing: (1) The previous dataset has been enlarged for the data-
driven method implementation. (2) We propose the idea of in-
terpolating the logarithmic function from the physics-model hy-
pothesis to predict the large-scale 1D array of the sensor per-
formance curve. (3) We exploit and compare two image-based
methods, SVR with hand-crafted features and a deep network,
to realize the prediction by addressing the non-linear regression
task. (4) The varying manufacturing factors are fused with the
image features to improve the accuracy of our prediction. In the
reminder of this paper, we will describe our methods of dataset
generation. Then, the designed systems for generating prediction
models by traditional machine learning and deep learning will be
presented and compared.

Dataset Generation
Our prediction system is designed to output the sensor per-

formance curve based on an active-region image by a data-driven
machine learning approach. The pre-processed 2D image of the
nitrate sensor is the input to prediction system. Also, ground
truth, which represents the sensor performance data, is required
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to train the prediction model. Thus, we need to generate a con-
sistent dataset, including the input active-region images and the
ground truth.

Image Data Preparation
We use the same imaging system as in our previous work [3]

to capture the sensor images. The imaging system consists of a
fixed-focus digital microscope, a 0.5 × magnification telecentric
lens, and a fiber optic illuminator. As Fig. 2 shows, the cap-
tured images are centered in the active regions with varying back-
grounds. Since we only focus on the active region, we apply the
Sobel operator [8], Otsu’s algorithm [9], and subsequent morpho-
logical transformations to segment the active region. Then, the
active-region images, which clearly show the varying roughness
of the membranes, will be cropped to be our input images.

Figure 2. Examples of image dataset preparation: the top part shows the

captured images with the same resolution 1280 × 1024; the bottom part

represents the cropped active-region images, which have size around 500

× 500 pixels.

Ground Truth Data Generation
The system for generating ground truth data consists of two

parts: potentiometric response measurement and data simplifica-
tion. We obtain the sensor performance data by measuring the
difference of potential voltages between our printed nitrate sen-
sor and a reference sensor for around 24 hours [10]. Fig. 3 (a)
shows the process of measuring one batch of sensors in nitrate so-
lution. The physical model indicates that different concentrations
of nitrate solution affect the sensor performance. Thus, we gen-
erate our dataset by measuring the potential voltages in 0.1 molar
nitrate solutions as time increases from 0 to 24 hours to make it
consistent. Fig. 3 (b) shows the sensor performance measurement
for a batch of 16 sensors during this time window. Each mea-
sured performance curve is a large-scale 1D array, which consists
of 1.5K to 2.5K points sampled at different time intervals.

Figure 3. Measurement of the sensor performance of 16 sensors for

around 24 hours: (a) measurement process; (b) recorded results.

Since the measured sensor potentiometric response corre-
lates to many sensor design parameters, a prediction that only
depends on images is not reliable. Here, we introduce a physics-
based model to simplify the temporal potentiometric response

of the ion-selective sensor in the saturated phase. According
to the generalized Nernst equation [7] that is derived from the
first principle ion transport equation, the sensor output potential
voltages follow a logarithmic relationship with time. Thus, we
use a physics-based model to describe the behavior of the poten-
tial voltage V with increasing time t as shown in Eq. 1. Here, k
is Boltzmann’s constant, T represents temperature, and q is the
concentration of the nitrates in the testing solution. Also, b rep-
resents the vertical shift of the curve, which is highly related to
thickness and material variations of the fabricated membrane. In
the ideal case, the values of k, T , and q are constant during a man-
ufacturing run. But the sensor performance is also influenced by
some non-ideal factors, such as moisture, an inner water layer,
and secondary ion effects, etc. The non-ideal factors, however,
are difficult to quantify based on the physical model. Thus, we
simplify the raw data curve after saturation as a logarithmic curve
V f it with two parameters a and b, as shown in Eq. 2.

V (t) =
kT
q

log(t)+b (1)

V f it(xt) = a log(xt)+b (2)

We preprocess the original measured data and use the above
hypothesis to generate the best fitting logarithmic function with
optimum parameters a and b. In particular, we smooth and down-
sample the large-scale vector of the original measured potential
voltages Vm to a 100-element vector Vd . Only the last 80 points
of Vd are considered as the potentiometric response in the satu-
rated phase. Then, we apply a curve-fitting method to Vd to find
a logarithmic curve with time-points (xt = 20, ...,99) that best fit
it, called V f it . Here, we use the Levenberg-Marquardt algorithm
[11] to optimize the curve-fitting process. Fig. 4 shows two ex-
amples of the potentiometric response of the original measure-
ment Vm, the smoothed data, the downsampled curve Vd , and the
fitted curve V f it in the saturated phase. In conclusion, the param-
eters a and b are the ground truth for our prediction to determine
the sensor performance curve. We will introduce several meth-
ods to predict the parameters a and b based on the active-region
images in the next section.

Figure 4. Curve fitting example: the left-side figure shows the voltage re-

sponse of the original measurement and the smoothed data as a function of

time; the right-side figure shows the downsampled data points and the fit-

ted curve Vf it vs. defined time points corresponding to the saturated phase.

Here, a = 35.06, and b = -217.05.

Methods of Prediction Based on Images
Based on the previously discussed physical model, the raw

data of each sensor Vm is transformed to a logarithmic curve V f it ,
which will be treated as the prediction target in our implementa-
tion. As shown in Eq. 2, two parameters a and b determine the
shape of the V f it . Therefore, the curve prediction task becomes a
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two-output regression task. The overview of our system is shown
in Fig. 5. Ground truth values for a and b are generated for each
V f it ; and the training portion is used to supervise the learning
process for the prediction system, which is a non-linear regres-
sion model. The inputs to the prediction system are images or
feature vectors. The outputs are the predictions ã and b̃. In this
section, we apply an SVR and a deep network as our non-linear
regression models, and evaluate both performances.

Figure 5. Prediction system based on images via a machine learning

approach.

SVR with Hand-Crafted Features
SVR is an established machine learning method that can es-

timate the relationship between a high-dimensional feature space
and a low-dimensional output space. To train the SVR, we firstly
need to handcraft a 1D feature to describe the roughness of
each active region. In the previous decade, the LBP descriptor
has been commonly used to describe texture information, and
achieved successful results in image classification [12]. Here,
we use the circular LBP descriptor, as it is robust to rotation and
illumination variations. Following [3], we extract a 9-element
LBP array to represent the texture information.

After extracting image features, we exploit the SVR pre-
diction model to find the approximate mapping from the hand-
crafted features to the output parameters. To be more specific,
the extracted 1D LBP arrays in our training dataset are inputs to
train the SVR. The conventional SVR establishes a linear/non-
linear function from a high-dimensional input to a single value.
In our case, the desired output is a pair of parameters a and b
for each sensor. Thus, we train two independent SVRs for both a
and b with shared inputs to construct a multi-output SVR system.
As shown in Eq. 3, xi represents the input feature vector, yi is the
single output, and w represents the coefficients of the regression
model. In contrast to a least square regression, which minimizes
the distance between target and prediction, SVR’s objective func-
tion minimizes the L2 norm of the coefficients w, subject to con-
straints. The constraints of the SVR have a hyper-parameter the
margin ε . For the predictions that fall in the margin, the penalty
is zero. The objective function also includes a term ζi, which
penalizes the deviations of the predictions outside the margin.
A hyper-parameter C is set to control the weight of the penalty
for the deviation. By tuning the hyper-parameters C and ε , the
SVR can obtain optimal performance. Since our previous ex-
periments [3], using linear regression to predict the sensor per-
formance, did not achieve a high accuracy, we consider that the
relationship between the extracted features and the sensor per-
formance is non-linear. Thus, we apply an radial basis function
(RBF) kernel to the SVR [13] to handle the non-linearity.

min
1
2
||w||2 +C

n

∑
i=1
|ζi|

constraints : |yi−wT xi| ≤ ε + |ζi|
(3)

Deep Learning Approach: Fine-tuning the CNN
In recent years, CNNs have demonstrated compelling per-

formance for high-dimensional features extraction, image recog-
nition, and image classification tasks [6]. In this work, we also
leverage CNN to realize our prediction of the parameters a and
b. In contrast to the SVR prediction tool based on the hand-
crafted features, we directly feed the 2D active-region images to
the CNN. As shown in Fig. 6, the images with their correspond-
ing ground truth data are used to tune the parameters of the CNN.
We follow the physics-based model to compute the approximate
potentiometric response with time points xt . Here, xt takes on the
same values as before, which are 20, 21,..., 99. In each epoch,
the L2 loss between the predicted voltage vector Ṽ f it(xt) and the
ground-truth vector V f it(xt) will backpropagate to tune the pre-
diction model.

Figure 6. System for training the CNN.

We select ResNet-34 [14] as our backbone network. This
network uses a residual learning strategy, which retains the
learned features from the shallow layers to prevent the gradient
from vanishing or exploding during the optimization. In gen-
eral, the network has two main parts: convolutional layers and
fully-connected (FC) layers. The convolutional layers are used to
extract high dimensional features from the input images. Then,
the FC layers regress the extracted features to the desired out-
puts. In addition, the ResNet also applies a global average pool-
ing after the convolutional layers to reduce the dimension of the
global representation. This pooling process can largely reduce
the memory use and computations during the training process by
taking the place of several FC layers in other networks, such as
VGG [15] or AlexNet [16]. In the last layer, we change the out-
put nodes of the original FC layer from 1000 to 2 for fitting the
dimension of our desired outputs a and b. In addition, we replace
the loss function cross-entropy loss, which is for image classifi-
cation, by the L2 loss, as we mentioned earlier for our regression
task. In addition, we initialize our model with the weights pre-
trained on ImageNet [17] to yield faster convergence.

Fusion of Manufacturing Factors and Image
Features

As we mentioned, the physics-based model indicates that
the sensor performance also strongly depends on the thickness of
the membrane. However, the active-region images that we used
in the above methods do not contain thickness information. In
addition, the thickness of the coating membrane is around tens of
micrometers, which is expensive to measure. We notice that there
are several manufacturing factors that are related to the thickness
variations of our sensors. Since our dataset is constructed by the
sensors with different manufacturing settings, we improve our
prediction systems by fusing the varying manufacturing factors
to the inputs of prediction system. In our case, two essential
manufacturing factors described below will be used.

• Solid content: One property in the solution recipe of mak-
ing the ISM. It represents the percentage by weight of the

Society for Imaging Science and Technology Printing for Fabrication 2020110



coating solution that is non-solvent. The range of the solid
contents in our dataset is [22.08,31.51] %.

• Flow rate: It records the speed of coating in the fabrica-
tion process. The range of the flow rate in our dataset is
[0.4,1.4] mL/min.

To efficiently fuse the above manufacturing factors with the
image data, we concatenate the array of 2-element manufactur-
ing factors and the extracted 9-element LBP array. In addition,
we normalize both features to balance the weights of these two
inputs. In particular, the sum of elements in each LBP array is
equal to 1. Also, we normalize the manufacturing factors to the
range 0 to 1. The normalized features will be the new inputs fed
to two independent SVRs for predicting a and b.

We also propose a method to fuse the manufacturing fea-
tures and our CNN’s visual features to leverage the CNN’s abil-
ity for feature extraction. Since the previous prediction method
of tuning the CNN uses end-to-end training, that method is lim-
ited to directly fusing the 2D image and the 1D manufacturing
features. As a alternative approach, we apply the architecture of
ResNet-34 with weights pretrained on ImageNet to extract the
visual features. There is only one FC layer in ResNet-34. In our
implementation, all layers before the last FC layer are used for
feature extraction. The output visual features comprise a 512-
element array. Normalization is applied to the visual features
and the manufacturing factors to balance the inputs. We con-
catenate them together and implement the same non-linear SVR
system to realize the regression. Our experiments will quantify
and compare the prediction system before and after fusing the
manufacturing factors.

Experiments and Results
Following the methods for dataset generation discussed pre-

viously, we construct a dataset, including 123 sensors with the
extracted active-region images and their sensor performance met-
rics. Then, the curve fitting method is applied to generate ground
truth V f it that can be described by parameters a and b in Eq. 2.
We use root mean square error (RMSE) based on the difference
between the fitted curve V f it and the down-sampled measurement
Vd to evaluate the performance of the curve fitting for each sen-
sor, as shown in Eq. 4. Here, N = 80, which is the number of
time points. The range of time points corresponds to the satu-
rated phase of the raw data Vm. As a result, the average value of
the RMSE is 2.72 mV or 2.83% for the whole dataset. In con-
clusion, the fitted logarithm curve V f it can accurately depict the
original measured potentiometric response in the saturated phase.

RMSE f it =

√√√√ 1
N

99

∑
xt=20

(
Vd(xt)−V f it(xt)

)2 (4)

RMSE f it(%) =

√√√√ 1
N

99

∑
xt=20

(
Vd(xt)−V f it(xt)

Vd(xt)

)2

×100% (5)

We use 6-fold cross validation, one of techniques in ma-
chine learning evaluation, to prevent over-fitting and to provide a
fair comparison of each method. To perform this technique, we
randomly separate our dataset into 6 folds with 20, 20, 20, 20,
20, and 23 sensors in each fold. In each experiment, we pick 5
folds for training a prediction model. Then, the remaining 1 fold,
which was not used in training, is used to inference the trained
model. From the 6 experiments with different inference datasets,

the average and variance of the results will be calculated to eval-
uate the prediction methods. We apply cross validation for each
method to quantify the prediction accuracy and variance in a pro-
duction environment.

Implementation Details
We follow the above experimental procedure for both our

traditional machine learning and CNN based methods to predict
the fitted logarithmic curve V f it with the predicted parameters ã
and b̃. We also fuse the thickness related manufacturing factors
(MF) to the inputs of these two methods to compare with the
prediction performance solely based on the sensor active-region
image. In summary, we realize the prediction of sensor perfor-
mance with the following four methods.

• LBP + SVR A 9-element 1D LBP texture representation is
extracted from the active-region image and fed to the SVR.
Since SVR assumes that the input features are in the stan-
dard range 0 to 1, a normalization process for the 1D LBP
feature vector mapping the minimum and maximum to 0
and 1, respectively, is performed before feeding the images
to the training process. In addition, as we mentioned ear-
lier, there are two flexible hyper-parameters in the training
process, the margin ε and the weight of the penalty C. A
larger weight of penalty and a smaller margin makes the
model less tolerant of deviations, and vice versa. Here,
we select C = 2 · 103, and ε = 10−2 from trials for both
SVR systems of predicting a and b. In addition, for a fair
comparison these hyper-parameters are fixed in our 6-fold
cross-validation experiments.

• Fine-tuned CNN To implement this end-to-end deep learn-
ing approach, the active-region image is directly fed to
ResNet-34. In this implementation, the ImageNet pre-
trained weights are the initial weights of our model. As
our dataset is small, a small learning rate 10−5 is used in
training. In addition, the batch size is 4, which means that
we select 4 training examples for each forward/backward
pass. The model is trained for 5K epochs for stable per-
formance. The Fine-tuned CNN method requires a GPU
for efficient computation. We implement this method with
Pytorch, which is an open source machine learning library.

• LBP + MF + SVR The 2-element manufacturing factor
vector is concatenated with the 9-element LBP array. Then,
we perform the training and inference in the same manner
as we did for LBP + SVR, but with the different inputs. In
this method, we optimize C to be 2 ·104, and ε to be 10−2.

• Pre-trained CNN + MF + SVR This method also lever-
ages the architecture of ResNet-34. In contrast to Fine-
tuned CNN, there are no hyper-parameters to set for train-
ing. All the layers’ parameters are pretrained on ImageNet
and frozen during the CNN feature extraction. The nor-
malized 512-element output from the last average pooling
layer is concatenated with the normalized 2-element man-
ufacturing factor vector as the overall feature vector. The
subsequent SVR systems predict the parameters a and b
based on the new features. Since the SVR is sensitive to its
hyper-parameters, we adjust C and ε to be 2 ·104 and 10−3,
respectively, to implement this method.

Evaluation and Results
The inference phase computes the predicted curve Ṽ f it and

compares it with the ground truth, which is the fitted logarithm
curve V f it . We use RMSE and its percentage to quantify the pre-
diction error between these two curves that are a function of time.
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Eq. 6 and Eq. 7 show the computation formulas. For each of the
above four methods, we apply the experiments of 6-fold cross
validation with the same data sets in each fold for fair compari-
son. The average RMSE, the average RMSE in percentage, and
the standard deviation of RMSE for the 6 experiments conducted
with each of the 4 methods are shown in Table 1.

RMSEpredict =

√√√√ 1
N

99

∑
xt=20

(
V f it(xt)−Ṽ f it(xt)

)2 (6)

RMSEpredict(%) =

√√√√ 1
N

99

∑
xt=20

(
V f it(xt)−Ṽ f it(xt)

V f it(xt)

)2

×100%

(7)

Table 1: Results of RMSE in four prediction methods with
6-fold cross-validation experiments.

Method AVG
[mV]

AVG
[%]

STDEV
[mV]

LBP+SVR 19.91 19.92 3.73
Fine-tuned CNN 14.66 14.71 2.79
LBP+MF+SVR 11.56 12.35 2.53
Pre-trained
CNN+MF+SVR

11.27 11.04 1.98

In our results, the average RMSE represents the prediction
accuracy. The standard deviation shows the robustness of the
prediction method. From the comparison of the first row and the
second row in Table 1, Fine-tuned CNN achieves better perfor-
mance than LBP + SVR. This shows that the CNN can extract
more reliable visual features and construct a more accurate re-
gression model to predict the desired outputs. On the other hand,
the implementation of our Fine-tuned CNN method is more ex-
pensive. It requires a GPU and takes around 2 hours to generate
a single prediction model in the training phase. The SVR learn-
ing model takes less than 0.01 seconds to generate the prediction
model, which is much faster in the training phase. Also, tun-
ing the CNN is designed to handle the image data solely; and it
is limited to boosting accuracy by fusing additional data to the
input images.

Since the SVR learning model is flexible with the input fea-
tures, we analyze the effects of the different inputs by applying
the SVR prediction systems. From the comparison between the
prediction results of LBP + SVR and LBP + MF + SVR in Ta-
ble 1, the traditional machine learning method achieves signifi-
cantly higher accuracy and more robustness after fusing the man-
ufacturing factors, which affect the thickness of the membrane.
This comparison also verifies the physics-based assumption that
thickness variations of the membranes strongly affect the sen-
sor performance. In addition, the method of Pre-trained CNN
+ MF + SVR combines the CNN-based image features and the
thickness-related data to the inputs and realizes the prediction
by SVR model. This method reduces the RMSE of prediction
error to 11.04% and achieves the most accurate and robust per-
formance among the proposed prediction systems.

Conclusion
We exploit several different machine learning approaches to

realize the prediction of the performance of thin-film soil nitrate

sensors based on pre-processed sensor images and manufactur-
ing factors. The physics-based model that the sensor response
obeys a logarithmic curve as a function of time paves the way for
our curve prediction. In this work, CNN shows a more powerful
ability to extract accurate features from images that are related to
sensor performance. The comparison among the different input
features with the SVR system verifies that the thickness of the
membrane strongly affects the sensor performance. In addition,
fusing thickness-related manufacturing factors with the image-
based features significantly improves the prediction performance
and reduces the error to 11.04%. We also note from the third
row versus the fourth row in Table 1 that feature fusion of man-
ufacturing factors with a Pre-trained CNN achieves slightly bet-
ter results than LBP + MF + SVR. In the future, we will focus
on an efficient way to fuse manufacturing factors with the more
reliable visual features provided by the Fine-tuned CNN. In ad-
dition, more manufacturing factors will be tailored and fed to the
regression to improve prediction performance and monitor the
manufacturing process.
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