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Abstract  
Additive manufacturing techniques have been the focus of 

studies and technological advances in recent years, obtaining the 
capability to fabricate pieces with complex geometries easily, 
rapid and with high precision, allowing the use of different 
materials, the appearance of new techniques, and a range of 
applications beyond prototyping. However, Additive 
Manufacturing techniques are still affected by some deficiencies 
and challenges such as the absence of sensing and control during 
the fabrication process that would result in a more reliable 
process and printed part. This paper shows the development of an 
inference process using probabilistic graphical models, in order 
to track the motion of the extrusion nozzle during the printing 
process using linear encoders. 

Introduction 
Additive Manufacturing processes or 3D printing systems 

consists of generating a three-dimensional object with specific 
geometry by the successive addition of material in layers [1], [2]. 
This kind of manufacture requires the computer-aided design to 
describe the proper geometry of the object. Nowadays, additive 
manufacturing encompasses different techniques such as [3], [4]: 
Vat photo polymerization; Material Extrusion; Binder Jetting; 
Material Jetting; Directed Energy Disposition; Powder Bed 
Fusion; and Sheet Lamination. Currently, the main differences 
between these techniques are the raw material used, the states of 
those materials, and the means to accomplish adhesion between 
the particles of the material. These techniques provide the 
versatility to fabricate almost any geometry, reduce costs, and 
facilitates prototyping which in turns shortens product 
development time, becoming a particularly attractive alternative 
for industrial sectors such as aeronautics, automotive, biomedical, 
education, and health. In general, additive manufacturing 
processes begin with a computer-aided design (CAD) of the piece 
or product to make, this design is usually saved as mesh file 
(.STL) to be processed by a specialized software which is 
responsible to slice the object transversely in order to reproduce 
its geometry. The same software generates commands and 
routines (G-code) for the 3D printer to fabricate the desired object 
[5]. Figure 1 shows the 3D printing workflow.  

 

 
Figure 1. 3D printing workflow 

One of the most affordable and popular AM technologies is 
Fused Filament Fabrication (FFF), which consists in pushing a 
filament of a thermoplastic material (usually PLA or ABS) 
through a hot extrusion nozzle onto a printing platform. By 
generating a relative motion between the nozzle and the printing 
platform and controlling the push of material, the printer is able 
to lay down patterns in 2D that forms a layer of the desired object. 
The printer then adjusts the relative height of the nozzle to the 
platform and lays down a new layer in the same manner. This 
process is repeated until the desired tridimensional piece is 
obtained. It is important to note that before depositing the new 
layer, the previous layer must already be solidified in order to 
guarantee a stable surface for the next layer deposition [4], [6]. 
Figure 2 shows the schematic of the FFF process.  

 

 
Figure 2. FFF schematic process [7] 

 
However, this technology derived from material extrusion is 

prone to suffer from several deficiencies and challenges such as 
the absence of monitoring and control during the fabrication 
process, materials limitations, uncertainty in the quality of the 
piece, poor mechanical performance, and several others [8], [9]. 
These process limitations allow the possibility of errors during the 
printing process that can be reflected in the objects [10]–[13]. 
Example of these are layer displacement and incomplete prints 
(see Figure 3), that go unnoticed during the printing process and 
result in a defective piece. These failures affect not only the 
aesthetics and an accurate reproduction of the desired geometry, 
but also result in poor adhesion between layers, poor mechanical 
performance, waste of time and material. 

 
Figure 3. A) Layer displacement error. B) No Material Extrusion error [14]. 
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Most of these printing failures can be attributed to the fact 
that 3D printers work in open-loop, i.e. 3D printers do not include 
supervision and control systems for the different variables, and 
the system cannot detect or correct those deviations from the 
desired trajectories. Therefore, the development of a closed-loop 
control system is suggested, in order to track, measure, and 
control the variables involved in the different additive 
manufacturing processes and consequently reduce the possibility 
of failures during the printing process [15]–[20]. The objective of 
this paper is to develop a supervision system based on 
Probabilistic Graphical Models in order to observe (and get an 
accurate information of) the printing process, specifically on how 
the printer is moving during the printing process, referenced to the 
G-Code generated through the slicing of the .STL file.  

The following section revises relevant related work that set 
the basis for the work proposed, then a probabilistic graphical 
model definition is presented, an inference machine is then 
proposed and some results are presented afterwards. The paper 
concludes highlighting the potential of this approach to strengthen 
3D printing systems by incorporating supervision systems and 
closing the control loop. 

Related Work 
There has been increasing research into how to implement 

numerical models, process monitoring and supervision, and 
control systems for additive manufacturing. Numerical modeling 
of the complete process is rare; the work by Xia et.al. in 
simulations of Fused Filament Fabrication using a front tracking 
method [21], which uses the finite-volume/front tracking method 
is an example of these efforts. The experimental validation of a 
numerical model for the strand shape in material extrusion 
additive manufacturing [22], investigates the influence of the 
processing conditions on the cross-section of a printed strand 
contrasting the results of their numerical model of the process.   

The development of sensors for Additive Manufacturing 
process is also one active research area; Baumann et. al. [23] 
proposes the concept development of a sensor array for 3D 
printer, which include sensor for motion/vibration, temperature, 
orientation and hygrometry. This development is conceived under 
the premise to be an easily deployable and wireless sensor client-
server system. 

The implementation of a Closed-Loop Control of a 3D 
printer Gantry [24] is an example of a research that combines 
numerical modeling and the implementation of sensors on the 
printer. This MS thesis developed at Washington University starts 
by using a low-cost 3D printer in order to explore the advantage 
of using a closed-loop control in a FFF printer, where magnetic 
sensors were installed to track the movement in the X, Y, and Z-
axis. The information captured by the sensors is processed to 
control the relative spatial position of nozzle and platform. If an 
error is detected, based on the G-code for the printing process, the 
system performs a corrective action. 

Similarly, an initial approach to close the control-loop for the 
positioning of a 3D printer was proposed by Ceron and Rojas [25] 
in which linear optical encoders were installed along the three 
axes of a FFF printer. Tests were performed with a basic 
proportional controller and results confirmed the advantages of 
closing the control loop for geometry reproduction under various 
perturbations of the printing process. 

3D printing companies have shown interest in creating more 
robust, closed-loop systems, using different variables 
(temperature, velocity, flow of material, etc.) to improve the 
quality of the objects made with their printers. An example is the 
Polish company ZMorph that manufactures 3D printers with an 
integrated closed-loop control system [26]. The control system 
uses angular encoders located at each of the five stepper motors 
of the printer that provide its angular position. The addition of this 
closed-loop control system makes it possible to fabricate objects 
with better surface finishes at high printing speed. However, the 
use of angular encoders at each motor does leave room for errors 
since it cannot detect problems with the transmission mechanisms 
to move nozzle or platform, or even if some of the encoders fail 
the process would be affected. 

Probabilistic Graphical Model Definition 
The proposed approach is to track and control the motion of 

a FFF 3D printer, from a data association generated from an .STL 
file which describes the geometry of the object to print. The G-
code represents the motion to be done by mechanical elements of 
the printer in order to move the extrusion nozzle and platform 
along X, Y, and Z axes.  

The graphical model is shown in Figure 4, where every X 
represents a new stage of the nozzle extruder during the printing 
process, stages which are described by a vector with x, y, z 
position, and the speed of each axis, and Y1 correspond to the 
observation of the stages through sensors. To define the 
relationship between different stage are proposed a linear motion 
model and a nonlinear motion model of the dynamic of the printer. 

 
Figure 4. Graphical Model. 

Linear Model: 
The relationship between different stages are established by 

Equation (1), where A represents the dynamics between the 
different stages and P (Equation (2)) is a random variable from a 
Gaussian distribution which represents an error in the 
relationship. 
𝑋𝑋𝑛𝑛 = 𝐴𝐴𝑋𝑋𝑛𝑛−1 + 𝑃𝑃      (1)  

𝑃𝑃~𝑁𝑁(∅,𝑉𝑉)     (2) 

The projection of the state ahead is described by Equation 
(1). For this specific application the transition matrix A is defined 
by a constant velocity transition matrix, assuming that while 
printing a piece the velocity remains constant throughout the   
motion expressing a linear dynamic model. This transition matrix 
A is defined by Equation (3). The error on the transition P can be 
defined as an identity matrix multiplied by a constant as shown in 
Equation (4), where L corresponds to the covariance constant. 
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   (4) 

These stages are observed by a linear optical encoder (Linear 
encoder WTB 500 [27]) represented by Y1 in Equation (5), every 
position of x, y, and z is sensed by one of these encoders with a 
resolution of 0.005 mm and the printing speed will be estimated 
by the variation of these positions. The specifications of these 
encoders are shown in table 1. The relationship between the stage 
and the measurements are defined by the Equation (5), where H 
is a factor that converts the readings of the system into the desired 
variable and R (Equation (6)) is a random variable from a 
Gaussian distribution which represent an error in the relationship. 

Table 1. Linear encoder WTB 500 specifications 
Resolution 0.005 mm 
Output Signal 5 V – TTL 
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Signal Type Two Quadrature Signal 
Velocity 1.2 m/s 
Maximal Value Measure 530 mm 

 
𝑦𝑦1 = 𝐻𝐻𝑋𝑋1 + 𝑅𝑅     (5) 

𝑅𝑅~𝑁𝑁(∅,𝐷𝐷)     (6) 

In this case, H is defined in Equation (7), representing that 
the sensors measure the position in the x, y, and z axes as 
independent variables. Also, the measurements present some 
error in its values, for that reason the Equation (8) describes a 
matrix that contains a deviation for each value of a measure, 
where D corresponds to a constant that depicts this error. 

 

𝐻𝐻 = �
1 0 0
0 1 0
0 0 1

0 0 0
0 0 0
0 0 0

�    (7) 

𝑅𝑅 = 𝐷𝐷 ∗ �
1 0 0
0 1 0
0 0 1

�    (8) 

Nonlinear model 
The projection of the state ahead is described by Equation 

(9). In this case the dynamic of the state ahead is represented 
through a vector function that depends on the last state Xk-1, and 
the control input u. This vector function involves the nonlinearity 
of the motion dynamic and it is established because of the 
variations on the position of the extruder and the printing speed 
during the printing process are nonlinear. For this specific 
application, only the control input is considered in the vector 
function and it is described by the G-Code for every movement 
and speed required during the printing process.  

 

𝑋𝑋𝑘𝑘 =  𝑓𝑓(𝑥𝑥𝑘𝑘−1,𝑢𝑢𝑘𝑘) =
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    (9) 

These states are observed by the same linear optical encoder 
presented in the last section, and the relationship between the 
states and the measurements are defined by the Equation (10) that 
represents a function of how the sensor observe the stage.  

𝑦𝑦1 =  ℎ(𝑥𝑥𝑘𝑘) = �
𝑋𝑋
𝑌𝑌
𝑍𝑍
�                           (10) 

Inference Machine 

Knowing that the graphical model for tracking the motion of 
a FFF 3D printer has a tree structure [28] (indicating that in the 
graphical model there is one and only one path between any pair 
of nodes, and consequently it has no loops in the structure 
definition and states [28]) the inference of the states can be 
obtained by introducing factors in the model structure, Figure 5 
shows the new factor graph. This inference can be achieved with 
the application of a Kalman filter for the linear model, and the 
application of an extended Kalman filter for the nonlinear model, 
these are interactive filters composed by two elements: the 
prediction process and the correction process. 

 

 

Figure 5. Factor graph 

Kalman filter for linear model 
The interactive process of the Kalman filter is shown in 

Figure 6 .  

 
Figure 6. Kalman filter process. Adapted from: [29] 

The prediction is the process were the system computes the 
next state, taking into account the actual state, a transition matrix, 
and a projection using a covariance error. 

Also, the prediction in every interaction computes a new 
estimation of the covariance matrix, this update is given by the 
Equation (11) and depends on the transition matrix, the actual 
estimation of covariance matrix, and matrix denominated Q, 
which represents a noise in the covariance matrix. 

  
𝑃𝑃𝑛𝑛+1 = 𝐴𝐴𝑃𝑃𝑛𝑛𝐴𝐴𝑇𝑇 + 𝑄𝑄                    (11) 

The process noise in the covariance Q is determined by 
Equation (12), were dt is equal to the acceleration of the noise in 
the process. 
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                                              (12) 

The correction process of the Kalman filter is given by three 
elements that are changing with the different interactions. The 
first element is the computation of the Kalman filter gain; this gain 
is computed using the observation matrix H, the covariance error 
matrix of the states P, and the covariance error matrix of the 
sensor R, as described by Equation (13). 

 
𝐾𝐾𝑘𝑘 = 𝑃𝑃𝑘𝑘𝐻𝐻𝑇𝑇(𝐻𝐻𝑃𝑃𝑘𝑘𝐻𝐻𝑇𝑇 + 𝑅𝑅)(−1)                  (13) 

The second element of the correction process is updating the 
state estimation using the measurement as described by Equation 
(14), where xk is the actual state value, Kk is the Kalman gain 
previously computed, Zk is the actual measured value and H is the 
observation matrix. 

 
𝑥𝑥𝑘𝑘 = 𝑥𝑥𝑘𝑘 + 𝐾𝐾𝑘𝑘(𝑍𝑍𝑘𝑘 − 𝐻𝐻𝑥𝑥𝑘𝑘)                      (14) 

The last step of the correction process is the update of the 
covariance error, this update process is established by Equation 
(15), and depends on the Kalman gain K, the observation matrix 
H and the covariance error matrix P. 

 
𝑃𝑃𝑘𝑘 = (𝐼𝐼 − 𝐾𝐾𝑘𝑘𝐻𝐻)𝑃𝑃𝑘𝑘                    (15) 
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Extended Kalman filter for nonlinear model 
The process of the extended Kalman filter is shown in Figure 

7. 
 

 
Figure 7. Extended Kalman filter process. Adapted from:[30] 

The prediction is the process were the system computes the 
next state, considering that the function depends on the last state 
and the control input. For this specific case, only the control input 
is taken into account as the G-Code in every step of the printing 
process.  

The covariance matrix is updated according to Equation (16) 
where A corresponds to the Jacobian of the states’ function as 
Equation (17) shows, and matrix denominated Q, which 
represents the process noise in the covariance matrix. 

  
𝑃𝑃𝑛𝑛+1 = 𝐴𝐴𝑃𝑃𝑛𝑛𝐴𝐴𝑇𝑇 + 𝑄𝑄                    (16) 

𝐴𝐴 = �
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𝜕𝜕�̇�𝑧

�                     (17)

                 

However, the Jacobian of the states’ function cannot be 
analytically calculated because, there is not an specific function 
to describe the dynamic of the states; therefore, this Jacobian 
matrix is computed in every iteration as the successive differences 
of the states as shown in Equation (18), allowing to obtain an 
approximation of the first partial derivatives.  
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The process noise in the covariance Q is determined by 
Equation (19), were dt is equal to the acceleration of the noise in 
the process. 

 

𝑄𝑄 =  𝑑𝑑𝑑𝑑
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The correction process of the extended Kalman filter is given 
by the same three elements. The first element is the computation 
of the Kalman filter gain, using the covariance error matrix of the 
states P, the covariance error matrix of the sensor R, and the 
matrix H as described in Equation (20), but in this case this matrix 
corresponds to the Jacobian matrix of the observation function as 
shown in Equation (21). 

 
𝐾𝐾𝑘𝑘 = 𝑃𝑃𝑘𝑘𝐻𝐻𝑇𝑇(𝐻𝐻𝑃𝑃𝑘𝑘𝐻𝐻𝑇𝑇 + 𝑅𝑅)(−1)   (20) 
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�                 (21) 

Because the observation function is a linear function the 
result of the Jacobian matrix is equal to the Equation (22)  

 

𝐻𝐻 = �
1 0 0
0 1 0
0 0 1

0 0 0
0 0 0
0 0 0

�                   (22) 

The second element of the correction process is updating the 
state estimation using the measurement (as described in Equation 
(23)), where xk is the actual state value, Kk is the Kalman gain 
previously computed, Zk is the actual measured value and h(xk) is 
the observation function. 

 
𝑥𝑥𝑘𝑘 = 𝑥𝑥𝑘𝑘 + 𝐾𝐾𝑘𝑘(𝑍𝑍𝑘𝑘 − ℎ(𝑥𝑥𝑘𝑘))                         (23)                 

The last step of the correction process is the update of the 
covariance error, this update process is established by Equation 
(24), and depends on the Kalman gain K, the observation Jacobian 
matrix H and the covariance error matrix P. 

 
𝑃𝑃𝑘𝑘 = (𝐼𝐼 − 𝐾𝐾𝑘𝑘𝐻𝐻)𝑃𝑃𝑘𝑘                    (24)                

Experimental Results 
The trajectory established for the experimental process was 

a square with dimension 50x50x0.6mm and thickness of 0.4mm 
this represents a printing process with only 3 layers if the layer 
height is 0.2 mm and a nozzle of 0.4mm is used. Figure 8 shows 
the shape and the trajectory used for the experimental process. 
This specific printing process takes 150 s with a set speed of 35 
mm/s. 

 
Figure 8. Shape and printing trajectory 

This trajectory allows to know that there is always movement 
at least in one axis, furthermore, due to the geometry of the object 
the motion of an axis (x or y) is null until another trajectory is in 
process. The z axis only performed the movement when the 
movement in x and y axis were done. Figure 9 shows the results 
of the measurements obtained during the printing process. 

 

 
Figure 9. Measurements obtained by the linear encoders during the 
printing process. 

Results of the Kalman filter for linear model  
First it is necessary to establish some aspects required in the 

Kalman filter application: a constant velocity of 35 mm/s is 
defined for the printing process in every axis, in order to use the 
model of a constant velocity approach.  

Another important parameter is the acceleration of process 
noise required in Equation 10, for this case the acceleration was 
considered as dt = 0.4 mm/s2. 

Other parameters defined were the constant that affects the 
covariance transition matrix P, and the covariance observation 
matrix R; to run these experiments the constant L was defined as 
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50, and the constant D was defined as 1, this means that the model 
believes more in the observations than in the transition model. 

Once the parameters and the measurements were taken, an 
algorithm that computed the interactive Kalman filter was used in 
order to estimate the trajectories. The results are shown in Figure 
10, where it can be observed that the estimation of the state does 
not represent a good estimation of the motion in the printing 
process. 

 

 
Figure 10. First estimation results of the Kalman filter.  

Adjustments of the constants L, D, and dt were performed 
intending to improve the model, setting more weight on the 
measurements and in this manner the inference process would be 
more reliable. The new settings were L = 100, D = 1/16, and dt = 
1. This process can be done because the system will always have 
information about the sensor. The results obtained are shown in 
Figure 11, these results are a better fit to the results and the 
dynamic of the established trajectory. 
 

 
Figure 11. Second estimation results of the Kalman filter.  

After adjustments of the constants L, D and dt a comparison 
between the measurements and the states estimation is performed 
in order to verify the results. Figure 12 shows the measurements 
of the position obtained in the x axis, and the estimation of the 
trajectory for x axis, where the estimation mostly fits the 
trajectory measured by the linear encoders, this means that the 
inference machine is providing appropriate estimates of the states.   

 

 
Figure 12. Comparison between measurements and estimation results in x 
axis using Kalman filter. 

In order to quantify the error between the trajectory and the 
estimation through the Kalman filter, the mean square error was 
calculated for the all 330mm movement done in the x axis, having 
5.006 mm as a result, this means that error between the estimation 
and the trajectory is proximally 1.51%.  

Results of the extended Kalman filter for 
nonlinear model 

In order to execute the extended Kalman filter for the 
nonlinear model is necessary to establish the GCode that’s is 
going to be used as the prediction states function. Figure 13 shows 
the trajectory established by the GCode during the printing 
process. 

 

  
Figure 13. GCode for the printing process. 

In this case, the parameters where configure different, 
because now a more realistic model (GCode) can describe the 
dynamic during the printing process. The new settings were L = 
1, D = 1 and dt = 0.0001. This means that we have a good 
transition model and a good measurement. The results obtained 
are shown in Figure 14, these results fits to the results and the 
dynamic of the established GCode trajectory. 

 
Figure 14.Estimation results of the extended Kalman filter. 

To quantify the error between the trajectory established by 
the GCode and the estimation of the extended Kalman filter, the 
mean square error was calculated for the all 330mm movement 
done in the x axis, having 5.06 mm as a result, this means that 
error between the estimation and the trajectory is approximately 
1.53%. 

Adding noise to the measurements  
During the printing process is possible that sensors can be 

failed or some noise can be introduced to the measurement signal, 
for that reason to the measurements some gaussian noise where 
added to simulated an unexpected problem during printing 
process and see what happens with the estimation with the two 
different estimation model. The new measurements are shown in 
Figure 15. 
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Figure 15. Noisy measurements. 

The results obtained for the linear model using Kalman filter 
can be observed in Figure 16, where the estimation of the different 
states is not a good estimation, this is because the linear model 
established for this application do not represent a good dynamic 
for the printing process, and having setup the parameter to believe 
more in the measurements the Kalman filter does not perform a 
good estimation process.  

 
Figure 16. Estimation process of the Kalman filter with noisy 
measurements. 

The results for the extended Kalman filter can be observed 
in Figure 17, where the estimation fits better to the trajectory for 
the printing process; this happens because this is a more realistic 
dynamic model using the GCode as the states function. Also, the 
comparison shows in figure 18 between the noisy measurements 
for position in x, GCode trajectory for position in x, and the 
estimation of the x position shows that the extended Kalman filter 
can produce a good estimation even if something happens with 
the measurements during the printing process.  

 
Figure 17. Estimation process of the extended Kalman filter with noisy 
measurements. 

 
Figure 18. comparison between noisy measurements, GCode trajectory 
and estimation for position in x. 

To have another perspective of how the trajectory 
established by the GCode and the estimation of the states through 
the extended Kalman filter fits, when some noise is added to the 
measurements, a plot of the trajectories in the x and y axis was 
made and can be seen in Figure 19. The difference between the 
estimation and the GCode is barely noticeable in Figure 19. B.  

 

 
Figure 19. A) Trajectory in the XY-plane (GCode and Estimation). B) Detail 
plot of the bottom right corner of the trajectory. 

Discussion  
Additive Manufacturing has an interesting potential use in 

different fields but is still a young manufacturing type which is in 
constant improvement. One of the challenges it still has is the 
incorporation of closed-loop control in order to get better 
performance in the machines and the pieces obtained by these 
processes, but to achieve this kind of control it is important to 
develop numerical models, supervision, monitoring, and 
predictive systems to have information that allows the control 
system to make accurate decisions during the printing process.  

The development of a Probabilistic Graphical Model using 
as an inference machine a Kalman filter for linear dynamic model, 
and an extended Kalman filter for nonlinear dynamic model 
requires the constant iteration between the prediction and the 
correction stages, in order to guarantee a correct inference value. 
Also, it is important to know the dynamics of the process to set 
the parameters for the inference machine. 

The Kalman Filter used for the linear dynamic model 
produced good results with low error for estimating the dynamics 
of a printing process if the measurement of the states does not 
present errors. This linear dynamic model does not capture any 
irregularities in the printing process, thence it was necessary to 
setup the Kalman filter to follow more the measurements than the 
dynamic model.  

On the other hand, the extended Kalman filter used for the 
nonlinear model produced good results for estimating the 
dynamics of a printing process, the GCode was included as a 
control input for the states function, making the estimation more 
accurate. Also, this method allows tracking of the system even if 
the system receive noisy values from the sensors, doing the 
prediction based in the transition model.  

Probabilistic Graphical Models used as an inference method 
can be a tool for tracking the motion in the 3D printing process, 
and it can be adjusted to the dynamics of the motion during the 
process. For future work this inference process can be used as a 
state observer, allowing to have feedback of the process and to 
close the control loop over the motion during the printing process. 
This approach would be an important step to prevent failures and 
improve the results and piece performance obtained by FFF and 
could be extended to other additive manufacturing techniques 
making printers more robust.  

The integration between this Probabilistic Graphical Model 
and an FFF 3D printer is currently being done; this required an 
improvement in the instrumentation and processor of the 3D 
printer, in order to obtain the necessary measurements and enough 
information processing capabilities. This process has extended 
much longer than anticipated because of the COVID-19 
pandemic, the access to the University and the laboratory was 
restricted for several months and many restrictions are still in 
place to prevent further spread of the virus. 
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