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Abstract
It is known that the foodborne pathogen E.coli O157:H7

from contaminated food can cause severe disease in our bodies
and even death. Therefore, the detection of foodborne pathogens
in our daily diet is crucial for global public health. We have previ-
ously reported an affordable, rapid, and simple method for detect-
ing E.coli O157:H7 that uses inkjet patterning to create function-
alized biosensing test strips detecting the target organism down to
102 CFU/ml. In this paper, we focus on optimizing the response
variations of our biosensors for detecting the same concentra-
tion of the target in two aspects: the comparison of various image
segmentation methods and the optimization of the number of print
layers.

Introduction
The foodborne pathogen E.coli O157:H7 that produces tox-

ins that damage the lining of the intestine, is a worldwide threat
to public health. E.coli O157:H7 can be easily found in con-
taminated water and contaminated food, especially undercooked
ground beef, milk and juice, raw fruits and vegetables. And,
E.coli O157:H7 infections from contaminated food continue to
occur regularly, and result in sever disease and even loss of life.
Therefore, a fast, reliable, and affordable biosensor is more and
more in demand. Many traditional lateral flow biosensors have
been developed for foodborne pathogen detection. However,
most of these are laboratory-based and cannot be manufactured
economically. To address this problem, we incorporate printing
and biomaterials technologies to design inkjet-printed test strips
(PTSs) that guarantee rapid, affordable, reliable, and reproducible
detection of the pathogens.

The detection result of biosensors can be determined by vi-
sual inspection or by a color measuring device. To have a quan-
titative and objective color analysis, color measuring instruments
are more favored. As digital technologies continue to develop,
cheap and compact image sensors are widely used in common
electronics, like cell phones. The phone-based imaging system
is promising for signal detection due to the above features, and
also is emerging in different fields, such as high-resolution mi-
croscopy [1] and fluorescence imaging [2]. In our work, we pro-
pose a phone-based image processing algorithm to analyze im-
ages of the exposed test strip that have been captured with a mo-
bile phone camera.

Overall, we develop the inkjet printing process for producing

the pattern for the capture of E.coli O157:H7. The readouts of test
results can be interpreted either by our image analysis system or
by the naked human eye. We prove that our PTSs can successfully
detect the presence of E.coli O157:H7 down to 102 CFU/ml [3].

One of the conditions that a successful biosensor must be
meet is that the detection results show a low variation between
assays. To measure response variations of our PTSs, ten indepen-
dent experiments were performed for the same concentrations of
E.coli O157:H7 test solution to obtain statistically reliable data
by dropping the same amount of test solution onto the PTSs us-
ing a pipette. Figure 1 shows the color change in test zones for
E.coli O157:H7 with the concentration 102 CFU/ml. The visi-
ble responses in the test zone and control zone indicate that the
PTSs are able to successfully capture E.coli O157:H7 with the
low concentration. Visually, we notice that the response of the
test zones varies. The reasons are the following: (i) the random
flow path of the reagents in the porous substrate (natural cellulose
paper: Hi-flow HFC075, EMD Millipore); (ii) the extra amount
of the bio-inks on the test zones increases the diffusion area; and
(iii) the response intensity can be varied by using different seg-
mentation methods. We optimize this problem in two aspects: the
comparison of various image segmentation methods, and the op-
timization of the printing process in print layers that can reduce
the sample-to-sample variation.

In this work, we propose two methods that reduce the re-
sponse variation between assays. First, we review the various
well-used image segmentation methods and apply them to de-
tect the responses in the test lines of test strips. The usefulness
of these segmentation methods is evaluated by comparing the re-
sponse variance of the corresponding segmentation results. Sec-
ond, we propose the optimization of the printing process, and ob-
tain less response variation.

Image segmentation techniques
In order to quantify the response of detection results, a given

phone-captured image needs to be appropriately segmented, so
that the test zone can be separated from the background in the im-
age. An example of phone-captured images is shown in Figure
1. The target region will consist of a contiguous region of pixel
locations indicating low brightness. And the background consists
of pixels that correspond to brighter or higher intensity pixels sur-
rounding the target. However, there are some noisy black areas,
such as scratch or black dots in the background, which increases
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the difficulty of segmentation. Preprocessing is required before
segmenting the test zones from the background. Based on the
printing location of biomaterials, we crop the test zone containing
detection information and background images and scale them to
60 × 130 and 60 × 50 pixels, respectively, using Adobe Photo-
shop, and save them in TIFF format without compression, as il-
lustrated in Figure 2. Then, we transform the gamma-corrected
sRGB values of the digital images to CIE L∗a∗b∗ color space
which has a visually uniform distribution of colors and is closer to
human perception of color differences than is sRGB. After trans-
formation, an image difference matrix ∆E of each test image is
obtained by subtracting the test zone images from the correspond-
ing background image matrix using equation (1).

∆E =
√

(L∗−Lavg)2 +(a∗−aavg)2 +(b∗−bavg)2 (1)

where
(
Lavg,aavg,bavg

)
are the average values from the local

background. Then, we normalize the ∆E values of the images
to the range [0, 255]. Image segmentation is one of the most
important steps of image processing, in which an image is subdi-
vided into several regions with the aid of pixel information, such
as color, intensity, and texture. A number of automatic segmen-
tation methods have been developed [4][5][6]. It is observed that
the segmentation result can directly affect the subsequent analy-
sis, and there is not a best image segmentation method because
different images have different characteristics. Here, we evaluate
how well several existing segmentation techniques can determine
the response signal in our PTSs when the boundary between the
test zone and the background region is unclear. In particular, we
use Otsu’s method [7], the valley-emphasis method [8], the twice
Otsu method, the histogram thresholding using hierarchical clus-
ter analysis [9], multi-level thresholding [10][11], and a Support
Vector Machine (SVM) method [13]. The usefulness of these seg-
mentation methods is also evaluated in this paper.

Figure 1. An image of test strips detecting the target at the concentration

of 102 CFU/ml.

Figure 2. The crop of just the test region for each test strip.

Otsu’s method
Otsu’s thresholding method is one of the best-known meth-

ods for automatic image segmentation [7]. Based on the his-
togram of a grayscale image, Otsu’s method finds the optimal
threshold t∗ that maximizes the between-class variance σ2

B(t).
The optimal threshold is expressed as follows:

t∗ = Arg Max
0≤t<L

{ω1(t)µ2
1 (t)+ω2(t)µ2

2 (t)} (2)

where L is the number of distinct gray values ranging from 0 to L
- 1, ω1(t) and ω2(t) are the probabilities of the two classes, and
µ1(t) µ2(t) are the average gray values of the two classes. This
method works well when the histogram has a strongly bimodal
distribution. However, the segmentation result is poor when the
histogram is close to an unimodal distribution, or when the back-
ground variance is large.

The valley-emphasis method
The valley-emphasis segmentation is a weighted Otsu’s

method. The idea of this method is to select the optimal threshold
value corresponding to a grayscale value that has a small probabil-
ity of occurrence and also maximizes the between-class variance,
as in Otsu’s method [8]. The objective function of this method is
expressed as:

t∗ = Arg Max
0≤t<L

{(1− pt)(ω1(t)µ2
1 (t)+ω2(t)µ2

2 (t))}, (3)

where pt is probability of occurrence of the grayscale value cor-
responding to the threshold t.

The twice Otsu method
We can observe that the background variance is large for

each image, so single threshold segmentation algorithm is hard to
effectively segment the target test zones from such kinds of back-
ground, as illustrated in Figure 3 O-7. It causes some of the back-
ground pixels to be classified as foreground pixels. To address
this problem, we apply Otsu’s method again to the segmented im-
age after first application of single Otsu’s threshold method. One
of the examples that the segmented image after second applica-
tion of single Otsu segmentation is shown in Figure 3 T-7, which
is expected to remove extra background regions. This method is
referred to as the twice Otsu method. In our application, the crite-
rion for an image applied twice Otsu method is that the ratio be-
tween the height and the width of the foreground should be higher
than an empirical chosen threshold. We use 0.4 as the threshold
in our application.

The histogram thresholding method
The histogram thresholding method using cluster analysis is

adopted to segment images with overlapping intensity distribu-
tions. Initially, every non-empty gray level is regarded as a sepa-
rate mode contained in a cluster. Then, the smallest distance pair
is merged based on the computation of distance between adjacent
clusters. The distance between the clusters Ck1 and Ck2 is defined
as

Dist(Ck1,Ck2) = σ
2
I (Ck1∪Ck2)σ

2
A(Ck1∪Ck2), (4)

where σ2
I (Ck1 ∪Ck2) and σ2

A(Ck1 ∪Ck2) are inter-class variance
and intra-class variance, respectively. σ2

I (Ck1 ∪Ck2) is the sum
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of the square distances between the means of the two clusters and
the total mean of both clusters. And σ2

A(Ck1∪Ck2) is the variance
of all pixel values in the merged cluster. [9]

The optimal threshold for the m-level thresholding is ob-
tained by iterating the previous process until m groups of gray
levels are obtained. For the two-level thresholding, we obtain two
clusters, C1 and C2, and the estimated threshold T1, which is the
highest gray level of the background.

The multilevel thresholding method
There is another multilevel segmentation method which is

an extension of Otsu’s method, called the multilevel thresholding
method. [12] Assume there are m thresholds, (t1, . . . , tm) dividing
the image into m classes. Then, the optimal thresholds can be
determined by the following equations:

Maximize J(t) = σ0 +σ1 +σ2 + . . .+σm

where σ0 = ω0(µ0−µT )
2 ,

σ1 = ω1(µ1−µT )
2 ,

σ2 = ω2(µ2−µT )
2 , . . .

σm = ωm(µm−µT )
2 .

(5)

where σ0, ..., σm and µ0, ..., µm, µT are the variance, the mean in-
tensity of each class, and the mean intensity for the whole image,
respectively. Each of the grayscale images in Figure 3 is divided
into three classes with three optimal thresholds t1, t2, and t3. And
t2 is the highest gray level of the background for each image.

Support vector machine classifier
The support vector machine method [13] is a supervised ma-

chine learning algorithm that has been applied to numerous classi-
fication problems. The key idea is to find the optimal hyperplane
to separate two classes. The optimal hyperplane has a maximum
margin between it and the nearest data points of both classes,
termed Support Vectors. From our image data, we can observe
that the grayscale values of the brightest pixels from the target are
much closer to or a little larger than the grayscale values of the
darkest pixels from the background. Therefore, due to overlap-
ping intensity distributions and unclear boundaries, we choose the
soft margin SVM algorithm [14] to apply to non-separable data.
The training dataset is defined as (xi,yi), i = 1, . . . ,n where xi is
the training sample and yi ∈ {−1,+1} is the class label. The ob-
jective function is the dual representation of the maximum margin
problem:

LD(α) =−∑
i j

αiα jtit jxix j

subject to 0≤ αi ≤C

∑
i

αiti = 0

(6)

where the parameter C controls the trade-off between the training
error and the margin, and the αi’s are the Lagrange multipliers.
The optimal hyperplane is given by:

f (x) = wT x+b

where w = ∑
i

αitixi
(7)

Here, w is the surface normal to the hyperplane, and |b|/||w|| rep-
resents the perpendicular distance between the hyperplane and the
origin. The features adopted for classification in this work consist
of normalized values of the grayscale images, and the L∗,a∗,b∗
values at each pixel position. Drawing on the training experi-
ence of medical image processing [14][15], we employ a subject-
specific training scenario. The golden standard segmentation re-
sults of the training images are obtained by manual segmentation
based on the results from the multilevel thresholding method and
the morphological operations. The ten images used as the train-
ing set consist of 10,000 test zones data samples and 20,000 back-
ground data samples.

Figure 3. The original images, grayscale images, and segmentation re-

sults for test images by the selected methods. (G, O, V, T, H, M, and S

represent the abbreviation of the ground truth segmentation result, Otsu’s

method, valley-emphasis method, twice-Otsu method, histogram threshold-

ing method, multi threshholding, and SVM, respectively.)

Data analysis
Figure 3 shows the final versions of binary results using the

above six segmentation methods combined with a 4-point con-
nected component method. It can be seen that the segmentation
results of Otsu’s and the valley-emphasis methods are very close,
and they can detect the presence of test zones. However, when
the images have poor signal-to-noise ratio, neither method can
precisely segment the test zone, as illustrated in Figure 3 O-7 and
V-7. The twice Otsu method can extract the refined test zone from
the backgrounds. For most images, the histogram thresholding
method mainly segments a significant part of the test zones with
larger grayscale values, but this can cause information loss, as il-
lustrated in Figure 3 H-5. Compared with the SVM method, the
detection results of the multilevel thresholding method are more
refined. The segmentation results of the SVM method is mostly
determined by the training data. For example, a training set with
a low brightness contrast between the target origin and the back-
ground leads to a classifier that has a greater probability of con-
fusing overlapping intensities of foregrounds and backgrounds,
as illustrated in Figure 3 S-10. The segmentation results indicate
that the multilevel thresholding method will extract the relatively
bright region in the grayscale image.

To assess the variation among the responses in the test lines,
we use the sum of ∆E from the detected region as the metric to
quantify the visual response. Figure 4 shows graphs of the varia-
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tions of the grayscale values for each test strip based on the met-
ric and the selected segmentation methods. When analyzing the
variation in the response results of the Otsu’s method, the valley-
emphasis method, and the multilevel thresholding method, we ob-
serve that the data of these three plots follow the same trend since
they all related to Otsu’s method. For the first two methods, 70%
of the data is located in the area comprising the mean ± 1 SD
(Standard Deviation), while the response of the multilevel thresh-
olding result varies greatly. 70% of the data values from the twice
Otsu method are also located in the area comprising the mean ±
1 SD, while they are more concentrated closely near the mean.
The variation result of the histogram thresholding method shows
that 60% of the data is distributed in the mean ± 1 SD. More data
values spread out from the mean in the histogram thresholding
method because of the incomplete extracted pattern. Although
the binary results of the multilevel threshold method are better, its
response variation is large. The plot of the SVM method shows
that 80% of the data is located in the mean ± 1 SD. Overall, we
conclude that the SVM method can segment test zones quite ac-
curately and presents less variation of color response in the test
zones.

The optimization of the printing process
The extra amounts of bio-inks printed on substrates increases

the diffusion areas of the test lines. To address this problem, we
optimize the print layers for test lines and control lines in the test
strips. To find the optimal print number of layers of drop deposi-
tion, it is advantageous to observe the color change in test strips
based on the different numbers of print layers. Here we use the

Figure 4. The plots of the variation of the grayscale values as a function of

the index of test strips.

checkboard print mask [3] which has been previously proved to
provide better control of the printed DNA pattern. Figure 5 shows
the image of the response signal in the test strips with varying
numbers of print layers captured by a mobile phone camera. Note
that for the target concentration at 103 CFU/ml, there is a less
sample-to-sample variation of visual signals in the test strips with
nine print layers compared with other numbers of print layers.

Figure 5. An image of the response signal in the test strips with varying

numbers of print layers captured by a mobile phone camera.

Conclusion
The response variation of the optical properties of the test

lines detecting the target at the same concentration is investigated.
To reduce the sample-to-sample variation in response to E.coli
O157:H7, as well as an effort to reduce material cost and print-
ing time, we optimize the numbers of print layers. The analysis
data of response variation using the various image segmentation
methods has also been given. We evaluate selected thresholding
methods for test zone images with the extracted pattern. And one
example with ten samples has been provided to show the compar-
ison of the response variations using these methods. We observe
that the proposed SVM method has the least response variance.
Also, we show that there is a less sample-to-sample variation of
response signals in the test strips with the optimal set of printing
layers.
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