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Abstract

Data-bearing halftone images are an aesthetically pleasing
alternative to barcodes. A frequency-based method has been pro-
posed to determine the scale, orientation and the location of such
images [1]. However, we find that the introduction of periodic
shifting of halftone dots complicates the detection of fundamental
peaks in the frequency domain. In order to analyze and solve the
problem, we develop solutions based on mathematical analysis
and simulation. We also perform experiments to detect the peaks
in the frequency domain using camera-captured halftone images.
Based on this work, a potential optimal design for data-bearing
halftone images will be proposed enabling the fundamental peaks
to be detected more accurately. We also provide a theoretical
proof that this design is optimal.

Introduction

Data bearing halftone images [2] [3] [4] [5] are visually
pleasant, and represent a high data density alternative to barcodes.
In prior work [6], the alignment and recovery method for data
bearing halftone designs has been introduced. Design parameters
of a data-bearing halftone image, such as scale, orientation, and
location, can be recovered using a frequency domain-based algo-
rithm [1]. In the frequency domain, accurate detection of funda-
mental peaks is crucial for the subsequent algorithm to calculate
the relevant parameters. In some experiments, we have observed
false detection of the fundamental peaks. This observation has
motivated us to theoretically explore the frequency-domain peak
distribution.

Problem

Embedding machine-readable data in print has many uses,
including authentication, labeling, and tracking. As an aestheti-
cally pleasing alternative to barcodes, we use classical clustered-
dot halftones with a periodic threshold array and embed data by
shifting the centers of the dot clusters [2]. As part of the detection,
we determine the scale and orientation of the halftone by finding
the highest amplitude peak in the frequency domain, due to the
strong periodic nature of this kind of halftone [1][7]. We recently
determined that data payloads with long runs of similar shifts (i.e.,
long runs of ones or zeros) can make alignment difficult in data
recovery, as the average centers of the clusters would have a bias.
To remedy this issue, we introduce balanced shifting where the
shift position for a cluster corresponding to a given bit will use a
mix of shifts in opposite directions with equal distance from the
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center position. For example, a one bit would shift up or down,
and a zero bit would shift left or right. This regular variation in
shifting creates spectral energy that constructively interferes with
higher harmonics of the fundamental. In the frequency domain,
this modification can result in the highest peak not representing
the fundamental frequency. In this paper, we analyze this problem
and present a solution. The following notation is used to describe
the problem and approach. The units for N, M, L, S, and T are
printer-addressable pixels.
Halftone image in spatial domain

Halftone image in frequency domain

Halftone image width

Halftone cell width

P=N/M Number of halftone cells across the

width of the image
L Clustered dots shift distance

SxT Dot cluster size

In order to clearly illustrate the problem, we set image height
equal to image width and (halftone) cell height equal to cell width.
Inspired by Ulichney’s analysis of blue noise using the radially
averaged power spectrum (RAPS) [8], we adopt the radial maxi-
mum power spectrum (RMPS) to radially detect the peak magni-
tude distribution in the frequency domain. Figure 1 illustrates the
RMPS for a particular choice parameter values and a particular
payload. In this example, N =480, S =2, T =2, M =24, L =09.
We adopt balanced shifting rule using a random payload (a ran-
dom binary sequence). We apply the DFT, and find the maximum
peak at every radius in the frequency domain.
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Figure 1. Radial maximum power spectrum (RMPS) for an example
halftone pattern with a random payload. The small box at the left identi-
fies the peak corresponding to the fundamental frequency. Note that it is not
the maximum peak in the RMPS. Note that the units are cycles/pixel in the
digital halftone image
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This example shows that it is very hard for us to set a thresh-
old to find the fundamental peaks directly because the magnitude
of the fundamental peaks is quite small compared to other peaks.
This has motivated us to explore the relationship between the peak
distribution and the encoded image parameters

Theoretical Analysis

The data bearing halftone image consists of carrier halftone
cells and abstention halftone cells [2][9]. In each carrier cell, the
cluster shifts in a specific direction to encode a bit value (0 or 1)
in the payload. In one example, a bit with value 1 would shift
up or down, and a bit with value O would shift left or right. In
each abstention halftone cell, there is no cluster. Figure 2 shows
an example of a data-bearing halftone text document image. To
decode the payload, use the region in halftone image shown in
the black box in Figure 2 for analysis due to its reliability and
reduced degree of noise due to non-constant content. The black
box region corresponds to a fixed gray level background. Figure
3 is a close-up view of the black box region in Figure 2. For
the purpose of analysis, we make the assumption that the payload
is a random sequence consisting of Os and 1s. For simulation,
we generate a digital data-bearing halftone image using a random
payload. Then the DFT is performed on the analysis region of the
generated digital data-bearing halftone image.
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Figure 2. Data-bearing halftone of a text document image.

Figure 3. Zoom-in of black box region from Figure 2.

Printing for Fabrication 2019

For the odd rows of halftone cells, the following notation is
used to describe the balanced shifting rule proposed above:

X: Random variable describing the shifting direction of
the dot cluster when encoding bit is 0 (X = 1: shift right, X = 0:
no shift, X = -1: shift left)

Y: Random variable describing the shifting direction of
the dot cluster when encoding bitis 1 (Y = 1: shift up, Y = 0: no
shift, Y = -1: shift down)

Based on these assumptions, we establish a probability
model for the balanced shifting rule.

1
P(Xi,jfl UY,jf())fZ

1
P(Xij=-1 uY,j_o)_Zl

1 1)

P(Xij=0UY,=1)=7

1
P(Xij=0UY;;= 1)21

The probability distribution for an even row of halftone cells
is the same as that for an odd row of halftone cells except that we
denote the two random variables by U and V.

The data bearing halftone image in Figure 2 can be expressed
in the following equation.

First, we define dot cluster function.
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The spatial domain expression for the halftone image can
then written as:
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Theoretically, we perform the Discrete Fourier Transform of
the image in the spatial domain. Then, combined with the proba-
bilistic model, we are able to determine the predicted peak distri-
butions in the frequency domain. The expectation of the magni-
tude of G[k,[] is as follows.

&(IG(k, D) = .

“

where:

Condition A : 2k mod P =0 & 2l mod P=0 & (k+1) mod P=0
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Similarly, we perform the analysis on an encoded image
based on the unbalanced shifting rule. In the unbalanced shift-
ing rule, the shift position for a cluster corresponding to a given
bit will use shifts in a single direction from the center position.
For example, a one bit would shift up, and a zero bit would shift
left. Thus, for the odd rows of halftone cells, the probabilistic
model changes to

POt =1 U3, =0) -
(6)

N = N~

P(Xij=0UYj=1)=

The probability distribution for the even rows of halftone
cells is the same with that for the odd rows of halftone cells.

The expectation of magnitude of G [k, 1] is

&Gk 1]) = 1P f3(k,1) - psincg (%) - psiner (%)

0, otherwise
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where:

Condition B : 2k mod P =0 & 2l mod P =0 & (k+1) mod P =0
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Analysis of printed sample image

In this section, We captured printed data-bearing halftone
pages. The data-bearing halftone image is generated based a
constant-tone background, and printed in a laserJet printer. Then
the printed image is captured by a phone camera.

If we directly apply DFT to the captured image and cover the
DC component following the method in [4], strong concentration
of power spectrum occur along the horizontal and vertical axes
in the frequency domain, which increase the difficulty to locate
the fundamental peaks, as shown in Figure 4. In order to solve
this issue, we propose to apply a 2D Hanning window[10] on the
captured image to reduce the effect of spatial domain truncation
of the image. The resulting spectrum is shown in Figure 5. The
effect is encouraging that the peaks in the frequency domain be-
come much more obvious than before.
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Figure 4.
image when no window is applied. The units of spatial frequency are cy-
cles/pixel

Zoom-in of frequency domain of analysis region of captured
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Figure 5. Zoom-in of frequency domain of captured image after applying a
Hanning window in the spatial domain

After the captured image is rescaled based on the fundamen-
tal peaks in the frequency domain, the rescaled image halftone
cell size should be equal to the printed image halftone cell size
[4]. With this property, we are able to judge whether the fun-
damental peaks are located correctly by comparing the rescaled
image halftone cell size and printed image cell size.

An Optimal Design of Data-Bearing Halftone
Images

So far, we have made the assumption that the payload is ran-
dom. However, this assumption is not suitable for all the cases
in the application, especially for some extreme payloads. Thus,
in this section, our goal is to develop a potential design of data-
bearing halftone images which works for all kinds of payloads.

Corresponding to these changes, we need to update the prob-
abilistic model and calculate the peak distributions according to
the new model.

Suppose in the payload, o is the ratio of number of bits 0
to the payload length. Suppose in the payload, 3 is the ratio of

Society for Imaging Science and Technology



number of bits 1 to the payload length. Then we have that
oa+pB=1
We apply balanced shifting rule. For the odd rows of halftone
cells, the probabilistic model becomes:

P(Xm'fl U Y,"j—()) —EOC
P(Xij=-1UY;=0) _%(x
1 ©)
P(Xm'—() @] Y,'ljf 1) 75[3
1
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The probability distribution for the even rows of halftone
cells is the same as that for the odd rows of halftone cells.
The image expression in the spatial domain is the same as

(14)

From Equation 12 and Equation 14, we can tell that when
halftone cell size M is larger than a threshold value C, the max-
imum peak always locates at the position where k = 0, [ = 2P
(which is a = 0,b = 4, from Equation 12) in the frequency do-
main no matter how the payload changes. The fundamental peak
locates at the position where k = 1/2-P, [ = 1/2- P (which is
a=1,b=1, from Equation 12). The reason why M is required to
be larger than a threshold value C (for example, when the payload
length is 67, C =22, M > 22) is that the values of last two terms in
Equation 14 will change very little when a, ¢ change from a =1,
b=1toa=4,b=0 with a large M value.

The threshold value C is calculated using Equation 15 where

that shown in Equation 3. Combined with the updated probabilis- [ is payload length.
tic model, the expectation of the magnitude of G[k, 1] is
psincg (%) [-2
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E|Gk,1)| = 2 4\ L) p S\ N p T N/ C C
0, otherwise
10)
Equation 15 can be solved by iteration from an initial value.

where: Assuming the halftone cell size M is equal to or greater than the

Condition C : 2k mod P=0 & 2l mod P=0 & (k+1) mod P=0
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We can simplify condition C in Equation 11 to
2k=a-P, 2l=b-P, k+l=c-P
12)

(a,b,c are integers)

We substitute Equation 12 into Equation 10
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Then, we find that if we select L/M = 1/2 (dot shifting dis-
tance is half of the cell size), Equation 13 can be simplified to:
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threshold value C, a potential solution for locating the fundamen-
tal peaks in the 2D Fourier domain is to locate the peaks with
maximum magnitude in the RMPS. Then according to the geo-
metric relationship between RMPS and 2D Fourier domain, we
can locate the fundamental peaks in the 2D Fourier domain based
on the maximum peaks location in the RMPS.

Results

Validation of theoretical analysis via empirical
analysis

We generate digital data-bearing halftone images using a
random payload and apply Discrete Fourier Transform on the im-
ages.

Below is one of the examples where we adopt RMPS to com-
pare the peak distribution predicted by theoretical analysis to that
based on the DFT of the digital halftone image (the empirical re-
sult). The image is encoded with balanced shifted dot clusters. In
this example, N =480, S =2, T =2, M =24, L = 6. Note that
these parameters don’t satisfy the condition for which the maxi-
mum peak in the RMPS occurs at the fundamental frequency. The
theoretical case in Figure 7 and the empirical result, which is in
Figure 6, are consistent with what we expect. The primary dif-
ference between the RMPSs shown in Figure 6 and 7 is that the
RMPS in Figure 6 has a significant baseline component, whereas
the RMPS in Figure 7 has no baseline component. We hypothe-
size that this is due to the fact that Figure 6 is based on the DFT of
a single sample function from the random process, whereas Fig-
ure 7 is based on an ensemble average over all realizations of the
random process.
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Radial maximum power spectrum of simulation result

PAN VARV
\

Power Spectrum
2

[

U

0
0 005 0.1 0.2 0.3 0.4 0.5 0.71
Radial Frequency (cycles/pixel)

Figure 6. Empirical RMPS based on the DFT of the digital halftone (The
black box locates the fundamental peak. The upper right corner shows a
close-up view of the fundamental peak)
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Figure 7. Theoretical RMPS based on Equation 15 (The black box locates
the fundamental peak. The upper right corner shows a close-up view of the
fundamental peak)

Validation of theoretical analysis via empirical
analysis based on real captured images

Figure 8 shows the RMPS computed from a captured image
of a printed version of the digital halftone on which the RMPS
in Figure 7 is based. Due to the influence of the capture angle,
light source, and capture distance, the peak distributions in the
captured image is not exactly the same as that in the theoretical
case shown in Figure 7. However, we are still able to achieve
the conclusion that the first 5 peaks in the RMPS obey the same
trends in both theoretical analysis and the real captured images.
In fact, the peak with maximum value appears at the 5th peak
in the RMPSs calculated from theoretical model(Equations 4 and
5)(Figure 7), via the DFT of the digital halftone (Figure 6) and the
DFT of the printed and captured halftone pattern (Figure 8).

Validation of optimal design via simulation

For all possible payloads we tested, we find that when the
carrier dot clusters’ shifting distance is half of the printed cell size
and the halftone cell size is greater than or equal to the threshold
C given by the solution of Equation 15, the location of the peaks
in the RMPS with largest magnitude is fixed no matter how the
other parameters vary. The location of the peaks in the 2D Fourier
domain corresponding to the fundamental frequency can be pre-
dicted based on the geometric relationship between the RMPS and
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Figure 8. RMPS of halftone pattern calculated from the DFT of the printed
and captured image (The black box locates the fundamental peak. The upper
right corner shows a close-up view of the fundamental peak)

the 2D Fourier domain. This behavior holds for all payloads, even
for extreme payloads. This result can be used as the basis for a
potential optimal design of a data-bearing halftone image.

In this section, we use 3 different kinds of payloads covering
different cases of payloads to illustrate our conclusion. The pay-
load length is 67. The first payload consists of 66 bit one and 1 bit
zero. The second payload consists of 57 bit one and 10 bit zero.
The third payload consists of 33 bit one and 34 bit zero. These 3
payloads are respectively encoded into 3 fixed gray level images
based on the balanced shifting rule. The 2D DFT is then applied
to the encoded halftone image. We use the RMPS to observe the
peaks location in the frequency domain. In this example, N = 480,
§=2,T=2,M =24, L=06. These parameter values satisfy the
optimal design rule that were started earlier.

From the result plots (Figures 9, 10, and 11), two predictions
which we make are confirmed:

1. When the payload varies (the ratio of number of bit one
to the number of bit zero in the payload varies), the fundamental
peak magnitude changes dramatically, especially when the num-
ber of bit one and bit zero is similar (JA — B] is small). It makes
hard for us to locate the fundamental peaks directly.

2. When the payload varies (except when it consists of bit
one or bit zero exclusively), if we select L/M = 1/2, the location in
the RMPS of the peak with maximum magnitude never changes.
Hence, as the location of the peak with maximum magnitude is
fixed, we can predict the location of the fundamental peaks in the
2D DFT of the data-bearing halftone pattern based on the geo-
metric relationship between the 2D DFT and the RMPS. Instead
of setting a threshold to locate the four fundamental peaks in the
2D frequency domain, we can accurately locate one fundamental
peak in the 2D DFT by using the relationship between the funda-
mental peak and the peak with maximum magnitude in the RMPS.
Based on the symmetry property, we can locate the other three
fundamental peaks in the 2D DFT accurately, as well.
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Figure 9. RMPS for 1st payload (The black box locates the maximum peak.
The upper right corner shows a close-up view of the maximum peak)
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Figure 10. RMPS for 2nd payload (The black box locates the maximum

peak. The upper right corner shows a close-up view of the maximum peak)
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Figure 11.  RMPS for 3rd payload (The black box locates the maximum

peak. The upper right corner shows a close-up view of the maximum peak.)

Conclusion

Our work provides a theoretical analysis of the peak dis-
tributions in the frequency domain of data-bearing halftone im-
ages. Based on the developed theoretical system of data-bearing
halftone images, we can predict how they will be influenced by
different shifting rules and different design parameters. We per-
form experiments to validate the results. An optimal design is
provided, based on a its theoretical proof. The optimal design can
be applied in practice.
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