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Abstract

Inkjet printed electrodes based on metal nanoparticle inks
represent a significant component in low cost, thin film electron-
ics. When scaled to continuous reel-to-reel processing platforms,
there is an advantage in non-contact, imaging-based methods to
monitor the quality of inkjet printed structures in real time. We
developed a machine learning method to predict inkjet printed
electrode sheet resistance based on microscope images of the de-
vice. The method can be extended to nondestructive, uninter-
rupted quality monitoring many reel-to-reel thin film manufactur-
ing applications.

Strips of silver nanoparticle electrodes are systematically
printed with different inkjet print parameters such as ink drop size
and drop spacing. Then, a machine learning model is trained on
processed microscope images of the electrodes and experimen-
tally measured electrode sheet resistance. The resulting model
can predict sheet resistance from images of the electrode with er-
ror as small as 10%.

Motivation

The performance of inkjet printed electrodes can vary greatly
depending on print parameters. In scalable manufacturing scenar-
ios, such as reel-to-reel inkjet printing, device yield is highly sen-
sitive to process conditions and it is important to monitor quality
of printed structures in real time. A primary performance metric
for a thin film electrode is minimizing sheet resistance. Toward
this goal, we developed an in-situ, noncontact machine learning
method to predict sheet resistance of silver nanoparticle inkjet
printed electrodes based on topological features visible in micro-
scope images of the electrode.

Problem

Clogged printheads, incorrect or inconsistent drop size, drop
spacing, ink dilution, substrate temperature, and other inkjet print
conditions can result in nonuniform distribution of the conduct-
ing material. Surface roughness, gaps, ridges, pooling, and over-
spreading of the metal nanoparticle ink degrades conductance. In
this study we demonstrate correlation between topological defects
visible in microscope images of the electrodes and increased elec-
trode sheet resistance. A machine learning model trained on data
sets consisting of measured electrode sheet resistance and micro-
scope images is shown to predict sheet resistance based solely on
images of the electrodes with an average accuracy of 26%.

The original design of these printed electrodes was for manu-
facturing of Nitrate sensors. To construct Nitrate sensors, a trans-
parent ion select membrane is coated on top of the silver elec-
trodes. The smoothness of the surface of the electrodes will affect
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the thickness and integrity of the top coating layer. Direct con-
tact in-situ measurements can damage the sample or reduce man-
ufacturing speed in reel-to-reel fabrication. Therefore non-contact
quality assessment such as image based methods provide signif-
icant advantages in reel-to-reel settings. Although the method
demonstrated here used single sheets of electrodes printed on a
table top inkjet printer, the method can be adapted to near real
time quality prediction for inline reel-to-reel processing. Using
a machine learning method, the sheet resistances of the printed
electrodes are predicted with the features extracted from images
of the electrodes.

Approach

The proposed method for predicting the sheet resistance of
inkjet printed silver electrodes is based on an experimental sheet
resistance measurement made physically on the electrodes and the
features extracted from digital images of the measured region. In
the model fitting process, the prediction model is trained with the
features extracted from the digital images as inputs and measured
sheet resistance as outputs. Finally, the sheet resistance of the
printed silver electrodes can be predicted by using just the im-
ages of the electrodes. This image-based and experiment-based
method is highly reliant on a systematic printing process and con-
sistency of the inkjet printer operation.

Experiments and Data Collection

The silver electrodes are systematically printed with differ-
ent ink drop size cartridges (1 pL/10 pL) and drop spacing with
the same silver nano-particle ink with 3% Ammonium Carbamate!!]
loading using a FUJI Film Dimatix Inkjet printer (FUJIFILM Di-
matix Materials Printer DMP-2800 Series). The printing plan is
shown in Table 1. At least 20 of the electrodes are printed on
one sheet with the parameter values specified in each row. The
time consumed for printing one sheet of electrodes usually ranges
from 1 hour to 10 hours according to its drop spacing. The smaller
the drop spacing is, the more time is required. A whole sheet of
printed electrodes and dimensions of one electrode is shown in
the Figs. 1 and 2.

Table 1: Printing Plan

Ink Drop Size (10 pL/1 pL)
10 pL

Ink Drop Space (1tm)
40 (635 dpi)

25 (1016 dpi)

20 (1270 dpi)

1pL 25 (1016 dpi)

20 ( )

10 ( )

1270 dpi
2540 dpi
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Figure 1. Sample of Printed Electrodes For One Set of Parameter Values

To collect the data, sheet resistance of each of the electrodes
is taken at five positions for each electrodes using a Jandel multi-
height probe as shown in Figure 2.The device is designed to per-
form multiple electrical measurements for samples with varying
thicknesses. Each sheet resistance measurement takes about 50
seconds to 5 minutes.The sheet resistance measurement results of
all 120 electrodes are shown in Figure 3. The boxes are the av-
erage value plus or minus the standard deviation of the five sheet
resistance measurements for one electrode, while the whiskers are
the maximum and minimum measurement values among the five
sheet resistances. Sheet resistance values are plotted on log scale
to show the large variation produced by systematically changing
inkjet print parameters.
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Figure 2.  Electrode Dimensions and Sheet Resistance Measurement Po-
sitions
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Figure 3. Sheet Resistance Measurement Results for Silver Nano-particle
Ink with 3% Ammonium Carbamate Loading, 10/1 pL Ink Drop Size from 40
umtopum

On the same area where the sheet resistance measurement
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is taken, digital images are captured with a 0.5x magnification
telecentric lens (Edmund Techspec compact telecentric lens # 63-
741), an in-line light source (Fiber-Lite PL900 illuminator), and
a progressive scan CMOS camera (Edmund EO1312 Color USB
3.0 Camera with a 2400 ppi resolution color CCD sensor). Due
to the transparency of the substrate, a piece of silicon wafer is put
beneath the imaging area to remove the noise generated by the
surface of imaging system operating platform.

Features Extraction

Since the light intensity over the image is not evenly dis-
tributed, before any image analysis techniques are applied to the
images, flat field correction[?! is applied to all of the images. The
dark field image (D in Equation 1) is taken when the lens is cov-
ered and the resulting image of the camera used here is completely
dark with O values across the whole image. Several flat field im-
ages (F in Equation 1) are captured when the settings of the light
and camera are the same as those when images (R in Equation 1)
to be corrected are captured. The comparison between the raw
image and the corrected image is shown in Figure 4.

C=(R-D)x —— =Rx =
F-D F
£ XY F )
m= (D
M x N

where M = imagewidth, N = image length,
(i,)) = pixel position

Figure 4. Before (Left) and After (Right) Flat Field Correction Applied to the
Image of the Electrode Printed with 10 pL, 25 um drop size (1016 dpi)

The two dark circles on the image are dents left by the middle
two probes’ head of the Jandel when doing the sheet resistance
measurement. The variations in image intensity and colors for
the horizontal ink lines is caused by a varying number of print
passes. This was confirmed by printed electrodes height analysis
performed using 3-D optical profilometer (Zeta-20). Strips with
darker color are areas that were covered with doubled layers of
ink. And some of the very narrow strips are areas that are not
covered by any ink. Uniformity and thickness of the printed ink
is a great factor impacting the conductivity. Thus, for a given
electrode the ratios of single layer, double layer, or no ink, greatly
affect sheet resistance, and these ratios can be extracted from their
relative color intensity in the microscope image.

The first step of the segmentation is to separate the elec-
trode area and the background area (Figure 5). The flat field
corrected RGB images are converted to grayscale images. Sobel
edge detectorl3] and Otsu’s method!*! are applied to the grayscale
images sequentially. The background and the electrode area is
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cropped with the most outer edge pixels shown in image [3] of
Figure 5.
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Figure 5. Background Subtraction

To subtract the single and double layer ink areas and back-
ground areas, the resulting image from the third step ([3] in Figure
5) is inverted and masked with the background mask ([4] in Fig-
ure 5). The K-means clustering®!®! training method is applied
to the pixels of the inverted and masked image. The connected
components are identified as either double layered ink areas or no
ink areas according to their pixel distribution in 3 clusters. The fi-
nal segmentation result is shown [7] in Figure 6. The single layer,
double layer, and no ink areas are segmented correctly, except that
the strip located in the center is mistakenly segmented as a no ink
area. This is due to the circular dents left by the sheet resistance
measurement probe heads.
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Figure 6. Image Segmentation Process

After the segmentation, the proportions of each segmentation
area within the electrode area are calculated based on the image
[7] in Figure 6. And the average light intensity for each segmen-
tation area is calculated based on both the image [7] in Figure
6 and the Y values, which represent the relative luminance for
each pixel of the flat field corrected image in the CIE XYZ color
spacel’l.

The edge raggedness of the electrode’s top and bottom edges
are calculated, which are specified in the background mask image
([4] in Figure 5 or Figure 6). The edge raggedness is the geometric
distortion of an edge from ideal. Simple linear regression is ap-
plied to the positions of the edge pixels to form a fitted line. The
raggedness is calculated as the standard deviation of the residuals
of the actual contour to the fitted line!®! (Equation 2).
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Edge Roughness(ER)
B \/ Y™ | [Fittedline(i) — Data(i)]’
= i ,
where M = imagewidth i = pixel horizontal position

(@)

Several methods were used to assess electrode surface rough-
ness from the images. The most straightforward method is edge
proportion (EP) method. The edge proportion is the ratio of the
number of edge pixels to the total number of pixels in the elec-
trode area. This EP is calculated based on the binary images [3]
and [4] in Figure 5.

Non-uniformity in the structures can appear with many dif-
ferent dimensions, and it is difficult to say whether a deep pin-
hole or a big, but shallow dent with larger roughness has more
impact on the sheet resistance measurement. With the Gaussian
pyramid!®! technique, the surface roughness on a variety of scales
can be collected. As shown in Figure 7, the original image is the
Layer O in the Gaussian pyramid. The standard deviation of the
Y values of the upsampled images belonging to each layer of the
Gaussian pyramid is calculated, and serves as one of the features
representing the unevenness of the surface.

Layer 3: Guassian Filtered 3 Times and
Downsampled 3 Times .

Layer 2: Guassian Filtered Twice
and Downsampled Twice

Layer 1: Guassian Filtered
Once and Downsampled Once

Layer O: Original Image

Figure 7. Gaussian Pyramid

Another technique called local binary pattern!!?l (LBP) is
well known for its light independence and wide applications in
characterizing texturing of paper!!!l and in the computer vision
for face detection!!?!. This technique is also applied here to pro-
vide more information about the texture of the printed electrode
surface. The local binary pattern used here is a rotation invari-
ant method with circular operators. With this method, the output
of the local binary pattern with eight neighbours is a 10-element
array to represent the local texture.

Model Fitting and Cross Validation

All the features extracted from images of the inkjet printed
silver electrodes are merged into one matrix with a total of 19
columns and 600 rows as an input matrix for the training model.
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The input matrix contains five columns for the image segmenta-
tion and 14 columns for surface roughness. Since 20 electrodes
are printed for each of six sets of printing parameters and each
electrode has five sheet resistance measurements and five matched
images, the total number of rows for the input matrix sums to
600. For the same reason, the output matrix, which is the sheet
resistance measurement data for each measuring position has 600
rows. One model is trained for each set of printing parameters. In
total, six models are trained.

Before the model fitting process, all of the data need to be
normalized. After normalization, all the data have been scaled
to the range from 0 to 1. All the features extracted from images
are normalized with the min-max normalization method and the
sheet resistance measurement data is normalized with a logarithm
normalization method (Equation 3).

Data — min(Data)

Normalized Data = -
max(Data) — min(Data)

3
logioR )

R, — — o0
“ 7 logig[max(R)]

Two regression training models have been tested separately
for the model fitting process: the least squares!!3l14] (LSQR)
method and the support vector machine regression!'>! (SVM Re-
gression) method. Both the least squares regression method and
the support vector machine regression method are trained with all
the data and tested on the same data. The output of the test step is
the predicted electrode sheet resistance based on the microscope
images. The averageRgy, of the five experimental sheet resis-
tance measurements for each electrodes is calculated to represent
the print quality for the whole electrode. And the averageRp,.4 of
the five predicted sheet resistances is calculated in the same way.

The root mean square error (RMSE) in percentage units is
used here to to evaluate the goodness of fit for regression training
models. Therefore, the RMSE value quantifies the accuracy of our
predicted electrode sheet resistance. The calculation of RMSE in
percentage is based on the average experimental sheet resistance
measurements REx,, and the average predicted sheet resistance for
each electrodes Rp,.; (Equation 4).

Because the two regression models produce very similar model

fitting and cross-validation results, here only the result produced
by the least square methods will be presented.

RMSE (%)

2
x 100%

g

index=1

| Rprea(index) — Rpyp(index) |

Rgyp(index)

where N =total No.of electrodes

@

Five-fold cross validation is performed to assess the predic-
tion accuracy of the models. For one test, the 120 electrodes are
divided into five groups randomly. Every group has four elec-
trodes that are printed with the same set of parameters. With
six sets of printing parameters, the number of electrodes for each
group sums to 24. One at a time, each of the five groups serves as
a test set and the remaining four groups are the training set. After
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performing these five tests, the 120 electrodes are reformed ran-
domly into five new groups serving for the next set of five tests.
The total number of test iterations is 100, which means the 120
electrodes are reformed 100 times and each electrodes is tested
100 times. The final test error for each electrode is the average
value across the 100 tests. Because the final test error for each
page is based on multiple repetitions of the training process with
randomly formed data sets, the final test error (Equation 5) is also
called average absolute relative error (Avg.Abs.Re.Error).

B Zthl Error(t)

Avg.Abs.Re.Error (%) = x 100%

_ | Rpred —RExp | (®)]
RExp ’
t =indexoftest, T =total No.oftests

where Error(r)

Results
Table 2: Model Fitting Results

Drop Size Drop Space RMSE (%)
10/1 pL um For LSQR
Normalized | Re-scaled
10 pL 40 (635 dpi) 1.63 15.49
25 (1016 dpi) 5.14 36.30
20 (1270 dpi) 1.31 7.45
1 pL 25 (1016 dpi) 1.02 8.98
20 (1270 dpi) 3.61 28.91
10 (2540 dpi) 1.94 11.03
Average 2.83 21.02

The model fitting results are shown in the Table 2. The cross-
validation result is shown in Figure 8. All the data (including the
sheet resistance measurement data) are normalized to the range of
[0,1] before the training and testing process. The RMSE (%) for
the normalized data in the table listed above is calculated with the
normalized sheet resistance. And the RMSE (%) for the rescaled
data in the table listed above is calculated with the sheet resistance
data that are rescaled from range of [0,1] to the original measure-
ment range.

Judging the acceptable sensors is vital based on the predic-
tion module mentioned in previous sections. It is defined that the
acceptable electrodes are the electrodes with the sheet resistance
values ranged within 1.5 standard deviation based on the mea-
sured sheet resistance data for each electrode printed with same
set of parameters. The predicted acceptable electrodes are the
electrodes with the sheet resistance values ranged within 1.5 stan-
dard deviation based on the predicted sheet resistance data for
each electrode printed with same set of parameters. Based on the
module introduced in previous section, the prediction of the ac-
ceptable electrodes is as accurate as 87%.

Conclusion

From results shown for the five-fold cross validation, the av-
erage absolute relative error is around 26%. Because the sheet
resistance measurements are normalized before the training and
testing process using a logarithmic method which causes a higher
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Sheet Resistance Average Measurement Data And Prediction Data (3% 10 pL and 1 pL)
(LSQR Method)

10000

Sheet Resistance (mQ?)

1000
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10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 105 110 115 120

——Average Sheet Resistance Measurement

Index 1-20
Average: 15.37 %
Max: 35.67 %
Min: 0.89 %
STDEV: 9.67 %

Index 21-40

10 pL 25 pm:
Average: 51.35%
Max: 112.40 %
Min: 1.67 %
STDEV:28.73 %

Electrode Index Number

Average: 15.75 %
Max: 68.54 %
Min: 2.88 %
STDEV: 14.99 %

——Sheet Resistance Prediction

Index 61-80

1 pL 25 pm:
Average:9.91%
Max: 28.47 %
Min: 0.03 %
STDEV: 8.49 %

Index 81-100
1pL 20 pm:
Average: 46.62 %
Max: 123.07 %
Min: 8.54 %
STDEV: 32.24 %

Average: 15.59 %
Max: 56.94 %
Min: 0.52 %
STDEV: 15.66 %

Figure 8. Cross-Validation Trained and Tested with Least Squares Method: Original Experimental and Re-scaled Predicted Sheet Resistance

degree of compression, the models give a relatively small error
(average error is 21%) in the model fitting process. On the other
hand, the results for the five-fold cross-validation (average error
is 26%) are not as good as they appear in model fitting process.

While predicting sheet resistance with good accuracy is valu-
able, the method provides a non-contact, in-situ heuristic that can
be generalized to monitor quality in a wide range of reel-to-reel
applications Once trained, the model requires no further experi-
ment measurement.

Considering that the main purpose of the sheet resistance
prediction is to evaluate the quality of inkjet printed electrodes,
determining whether the quality of the printing job is acceptable
or not is more essential compared to the accuracy of the sheet re-
sistance measurement. A further step for this investigation can be
setting a threshold range regarding the features extracted from the
images of the inkjet printed electrodes, and to judge whether the
electrodes are acceptable.
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