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Abstract
Ground-based nitrate sensors have great potential in agri-

culture to monitor soil conditions in real time. One path to scal-
able mass production of inexpensive potentiometric nitrate sen-
sors is reel-to-reel slot-die deposition of ion-selection membranes
on screen-printed electrodes. However, this process produces
membranes with nonuniform thickness and texture that affects
sensor performance. Manually monitoring sensor quality dur-
ing fabrication costs many hours and human resources. So, we
developed a scalable quality assurance method that establishes
the relationship between sensor performance and the captured
sensor images. The relationship will help us to monitor sensor
performance only based on the sensor images. It will reduce the
cost of measurement. To accomplish this, we apply both tradi-
tional and deep learning techniques for sensor image processing
and regression. The traditional approaches are used to detect the
useful regions of sensor images. Then we use Convolutional Neu-
ral Networks (CNNs) to combine images of the sensor membrane
with sensor performance metrics to rapidly predict sensor qual-
ity. Successful prediction based on noncontact imaging will help
to better control the fabrication process.

Introduction
The scalable Manufacturing of Aware and Responsive Thin

Films (SMART) consortium [1] is developing economical print-
ing and manufacturing methods to meet the needs for new low-
cost consumer products in health monitoring, agriculture, elec-
tronics, architecture, and other fields. In this paper, we focus on
inexpensive mass-produced potentiometric nitrate sensors. Its de-
velopment includes roll-to-roll systems [2], the functional print-
ing, and ion-selective membrane [3] techniques to reduce the cost
and accurately measure nitrate level in farm soils in real time.

The electrodes of our nitrate sensor are printed on a
polyethylene terephthalate (PET) substrate, which is shown in
Fig. 1 (a). Fig. 1 (b) shows the components of the nitrate sen-
sor: a nitrate ion selection membrane layer, a silicone passivation
layer, and an underlying electrode layer. Also, the active region
within the sensor, defined as the portion of the ion selection mem-
brane that contacts the electrode, is the region of interest in our
quality assurance analysis. It is worth mentioning that the varia-
tions in the uniformity of our sensor produced by the fabrication
process are inevitable and affect the sensor performance. Accord-
ing to measured sensor data and a physics-based model of the
sensor, we hypothesize that there exists a relationship between
the nonuniformity of the membrane and the sensor performance.
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Therefore, studying this relationship can help us to better analyze
the fabrication process.

To verify our hypothesis, we use traditional methods of im-
age processing to locate the active region in the sensor two-
dimensional (2D) image, and analyze influence of ion-selection
membrane (ISM) uniformity.

Figure 1: Example of the screen printed electrodes: (a) the screen
printed electrodes on the PET substrate; (b) components of the
nitrate sensor.

From a traditional perspective, we need to handcraft some
features to represent the texturing level of the sensor that may help
us establish the relation between the image and the sensor quality.
We apply some image processing techniques, such as Normalized
Gaussian Pyramid [4], Laplacian of Gaussian (LoG) [5], and Lo-
cal Binary Pattern (LBP) [6], to quantify the texturing level of the
active region. Then, regression is applied between the sensors’
texturing level and the sensor performance metrics. However,
since "texturing level" has an abstract definition, it is challenging
to handcraft valid features to describe the roughness.

In recent years, CNNs, one of the most popular deep learn-
ing frameworks, have shown their strong ability in visual feature
extraction [7]. Therefore, in this paper, we propose a method that
uses the CNNs to extract and select useful and abstract texture
features. After quantifying those features, we apply a non-linear
regression between the image features and the sensor performance
metrics.

Method
The system proposed in this paper consists of both tradi-

tional image processing techniques and a deep learning model.
As shown in Fig. 2, image processing operations will be applied
to the captured image to crop the active-region portion of that im-
age. The active-region image will be fed to CNNs which return a
predicted performance metric.

Figure 2: System of prediction with image processing and the
CNNs
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It is worth mentioning the CNNs in Fig. 2 need to be trained.
As is the case with many other data-driven models, our networks
also need much data for training. Before the training phase, we
prepare the training dataset. As shown in Fig. 3, we capture the
active region and measure the performance metric for each sensor
for training. This dataset was used to update the networks. Once
the model has been updated, we use it for prediction.

Figure 3: Flowchart of the method of updating the CNNs.

Active Region Capture
To present the image of the sensor, an imaging system is

set up before the measurement of sensor performance to obtain
a 2D image of the region of interest of the sensor. As shown
in Fig. 4, the imaging system consists of a light source, a 0.5 ×
magnification telecentric lens, and a silicon wafer. We turn on
the light source and put the PET substrate with the nitrate sensor
on the silicon wafer. Then, the distance between the lens and the
substrate is manually adjusted to focus the camera on the active
region of the sensor. The camera captures and records each sensor
as a 2D color images with 1280× 1024 pixels. From the captured
images, the variations in roughness can be distinguished by visual
perception.

Figure 4: Imaging system for capturing sensor images.
Because we want to consider only the active area of each

sensor, we use a traditional method of edge detection to locate
and crop the region of interest. The Sobel filter [8] is used to
get the gradient of the image intensity. After applying the Sobel
filter, the edge will be clearer in the gradient image. Then, we
apply Otsu’s algorithm [9], which separates image pixels into two
classes: foreground and background. After getting the intensity
information, Otsu’s algorithm and a morphological transforma-
tion can be applied to get a binary image with white and black
pixels corresponding to the active region and the background, re-
spectively. However, only the large rectangle region is treated as
the active region. Therefore, we generate the maximum inscribed
rectangle of the active region and crop it as the final image. All
input images are cropped to a rectangle as shown in the right im-
age of Fig. 5. The input images do not contain any background
information.

Figure 5: Example of detecting the active region within the cap-
tured sensor image.

Sensor Performance Metric Generation
The data of each nitrate sensor performance is generated by

measuring the difference between the potential voltages of the
membrane and reference sensor in a specific nitrate solution. Fig.
6 (a) shows the measurement process. This measurement records
the results at 50 intervals over 24 hours or more. Fig. 6 (b) shows
a plot of the measured sensor performance with respect to time.
The measured nitrate sensor voltage consists of two characteristic
response windows, a transient response and a saturation response.
As the measurement time increases, the measured sensor voltage
tends to saturate at a constant value after around 5 hours, and be-
comes more and more stable. So, we select the potential voltage
at the end time, which is at 24 hours, as the metric of the ground
truth. To prepare a consistent dataset, all sensors were measured
in a 0.1 molar nitrate solution in this dataset. Also, it is clear that
there are 4 sensors with abnormal performance shown in Fig. 6
(b). We assume that the data with an abnormal behavior is from
the measurement process. Thus, the sensors with abnormal per-
formance will not be included in our dataset.

Figure 6: Measurement of sensor performance for 16 sensors in
24 hours: (a) measurement process; (b) recorded results.

Convolutional Neural Networks
CNNs have proven their abilities in high-level feature ex-

traction and regression tasks. As we mentioned above, CNNs are
data-driven models that need a large amount of data and ground
truth values to tune the parameters in the model [10]. However,
the number of sensors in our dataset is limited. To deal this prob-
lem, we use the pre-trained VGG-16 model [11]. As the pre-
trained model already has powerful ability to extract image fea-
tures, the initial CNNs’ parameters with pre-trained weights not
only requires less training data, but also can save a lot of train-
ing time. In our case, the VGG-16 was trained on ImageNet [12].
It already can extract visual features from 1000 kinds of objects.
Fig. 7 shows the architecture of VGG-16. VGG-16 model con-
sists of 13 convolutional layers and 3 regression layers. The first
13 convolutional layers are used to extract the high-level features;
and the remaining 3 regression layers are doing non-linear re-
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gression. The convolutional layers use convolution and maximum
pooling to map each 2D sensor image to a 25,088-dimension fea-
ture space. To complete the regression task, three layers perform a
non-linear regression that regresses 25,088 features, which is 7 ×
7 × 512 features from the convolutional layers, into one number:
the voltage measured by each sensor. Each layer includes a linear
fully connected layer, an ReLU function [13], and a "Dropout"
process [14]. Fig. 8 shows how two fully connected layers are
working. The fully connected layer means each node of the out-
put depends on all nodes of the input. From a mathematical per-
spective, as shown in Eq. 1, each element of the fully connected
layer’s output, which represented as x̂ j, is a linear combination
of all the input elements xi. The fully connected layer is doing
a linear transformation where ωmn are the weights and bn rep-
resent the bias. Following this linear transformation, the ReLU,
which not explicitly shown in Fig. 8, can be expressed as Eq. 2.
It only passes the positive output elements. Since ReLU is a non-
linear function, the combination of ReLU and linear transforma-
tion is also a non-linear transformation. In addition, Dropout is
an random process that drops half the elements from each layer
randomly. As shown in Fig. 8, the dash line means the connec-
tion was been dropped. In other words, the networks randomly
selected half the input nodes to fully connect to all the output
nodes. This process reduces the number of parameters and can be
used as regularization to prevent the overfitting.

Figure 7: Architecture of the CNNs with VGG-16.

Figure 8: Linear connection algorithm in fully connected layers.

x̂1 = x1×ω11 + x2×ω21 + ...+ xm×ωm1 +b1

x̂2 = x1×ω12 + x2×ω22 + ...+ xm×ωm2 +b2

...

x̂n = x1×ω1n + x2×ω2n + ...+ xm×ωmn +bn

(1)

y = f (x̂) = x̂+ = max(0, x̂) (2)

We define the loss to be the absolute difference between
regression result and the ground truth in the prepared dataset.
The loss value will be backpropogate to each parameter in the
CNNs [15]. The optimizer will tune each parameter to reduce the
loss. Once the training loss converges, that means our networks
can extract the useful high-level features and find the non-linear
regression function relating the captured sensor image features
and measured sensor voltage.

Experiments and Results
Following the above methods of dataset preparation, we col-

lect 71 active-region images with the corresponding metric of
the sensor performance. Also, we randomly select 51 images
for training, 10 images for validation, and 10 images for testing.
For a fair comparison, we also do an experiment that creates the
prediction model by a traditional machine learning approach on
the same training, validation, and testing datasets. In contrast to
the CNNs, the traditional machine learning approach only uses
the hand-crafted features of the membrane roughness to correlate
with the sensor performance metric. The experiments will use the
training dataset to train the prediction models. Then, the valida-
tion set will be fed to models so that we can estimate the perfor-
mances of these models on testing set. Especially for CNNs, we
need to use the performance from validation set to tune the param-
eters so that the overfitting problem can be prevented. The final
comparison will be operated on testing set.

Traditional Machine Learning Approach for Com-
parison: Linear Regression Model

The traditional machine learning approach used in this pa-
per is a combination of Local Binary Pattern (LBP) and the Least
Square (LS) regression model [16]. The LBP, which is a descrip-
tor that is invariant to rotation and illumination of the grayscale
image, is one of the most widely used texturing descriptor in the
computer vision area. As shown in Fig. 9, we first convert the
2D active-region images to grayscale. Then, we apply a Gaus-
sian filter to reduce the noise and smooth the grayscale image.
The LBP descriptor can be applied to the smoothed images. Each
pixel in the smoothed image will be set to a decimal value based
on a comparison between the anchor pixel and the surrounding
pixels. In our case, eight surrounding pixels are chose within a
circle centered at the anchor pixel with radius, three pixels. Af-
ter conversion, the 2D image, which stores the converted decimal
values, contains the texturing information of the original image.
Fig. 9 (c) shows an example visualizing the 2D LBP array. Then,
the one-dimensional (1D) LBP array can be constructed from the
2D LBP array by its histogram. The number of bins in the his-
togram depends on the number of prototypes of patterns, which is
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decided by the number of surrounding pixels. Due to the nonuni-
form patterns in the active-region images, we select the number
of prototypes to be twelve. The counts of the twelve prototypes
is constructed to the elements of LBP array, which is the input to
the LS regression model.

Figure 9: Example showing the visualization of the 2D LBP array
of an active-region image: (a) original RGB active-region image;
(b) grayscale rendering of (a); (c) LBP array of (b), where the
decimal values have been stretched to the range 0 to 255, and
inverted, so white corresponds to decimal value 0 and black cor-
responds to the maximum decimal value of 255.

As shown in Fig. 10, once the hand-crafted features, in this
case, the LBP array values, are extracted, we can feed them to
the linear regression model to get the predicted performance met-
ric. To generate the model, we use least squares regression to set
up a linear relationship between the hand-crafted features to and
the predicted sensor performance. In a 1D space, least square re-
gression finds a line that best fits the input points. In our case,
the training process finds a hyperplane that best fits the training
dataset. Here, the loss function is defined as the absolute differ-
ence between the prediction and the ground truth.

Figure 10: System of prediction with image processing and the
traditional machine learning approach.

Deep Learning Approach: CNNs
In contrast to the training process of traditional machine

learning, the deep learning approach uses the 2D active-region
images to be the inputs directly. All input images are resized to
224 × 224 pixels and fed to the CNNs. Also, training networks
requires a graphics processing unit (GPU) for fast computation.
As the development of deep learning, many useful deep learning
platforms and libraries are released so that people can manipulate
operations to networks in the convenient way. In this paper, we
use Pytorch [17], which contains many useful high-level applica-
tion programming interfaces, as our platform.

In addition, in the training process, the hyper-parameters
need to be specified to best fit our dataset to achieve better per-
formance, and reduce the time cost in the training process. Since
the initial convolutional layers use a pre-trained model and the
dataset is not large, a small learning rate 0.00001 is used in the
training process. Also, the number of epochs in the training pro-
cess is 5000 to guarantee that the training process has converged

and that the validation loss remains stable. After 5000 epoches,
we test our trained model on the test dataset.

Results and Comparisons
Our experiments create two different prediction models: the

linear regression model and the CNNs. These two models are
based on the 51 training images with the corresponding metric of
sensor performance. We use the 10 testing images in our dataset
to test the performance of the two prediction models. The value
of the end-time potential voltages in the sensor performance is
predicted through the testing process based on the testing images.
To evaluate the performance of each model, we obtain the values
of loss in the training, validation, and testing, and calculate the
accuracy of prediction. The loss function is defined by Eq. 3. N
represents the number of images in the target set. In addition, the
accuracy of prediction will be calculated by Eq. 4 to show the
performance of our models. V̂ f is the predicted end-time potential
voltage and V f is the measured value, which is the ground truth.
Here, N equals 10, which is the number of the testing images.

Loss =
∑ |V̂ f −V f |

N
[mV ] (3)

Accuracy = 1−
∑
|V̂f−Vf |
|Vf |
N

(4)

As shown in Fig. 11, in the experiment results of the CNNs,
the loss values in the training and validation sets are both con-
verging. The training loss starts from 119.1 mV and becomes
stable around 7.8 mV after 2000 epoches. The validation loss
also converges from 113.5 mV to 16.2 mV. Although the vali-
dation loss is larger than the training loss, the difference is still
in a reasonable range so that the model fits both the training and
the validation sets. These results verify our assumption that there
is a relationship between the features of the captured sensor im-
age and the measured sensor performance. Also, this relationship
can be approximated by our non-linear CNNs. Fig. 12 shows the
results of our predicted end-time potential voltages and the mea-
sured ground truth. The predicted results track well with the mea-
sured end-time potential voltage. The accuracy of our prediction
is 85.8%.

In addition, the traditional machine learning approach with
a linear regression also creates a prediction model. Table 1 com-
pares performance between the CNNs and the linear regression
model. It can be seen that the CNNs achieve higher accuracy.
This means that the networks can extract more useful high-level
features than the hand-crafted features. In the other words, the
LBP array in the traditional machine learning only captures lim-
ited characteristics of the sensor. Also, the table shows that the
training loss of the networks is much smaller than the LS model.
Thus, the non-linear regression of the CNNs better fits our dataset
than the linear regression model.

Conclusion
Our results show that both the CNNs and the linear regres-

sion model can successfully predict the single feature end-time
voltage of nitrate sensor performance based on active region im-
ages of sensors. It verifies the assumption that a relationship exists
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Figure 11: Loss values in each epoch in the experiment results
of the CNNs (red line represents the loss values in training set;
blue line represents the loss values in validation set; "*" labels the
starting points of these two lines).

Figure 12: Prediction results for 10 testing sensors, and ground
truth for comparison (red line represents the predicted values; blue
line represents the ground truth values).

between nitrate sensor images and sensor performance. From the
comparison, the networks achieves a higher accuracy of 85.8%
than the linear regression model. The convolutional layers can ex-
tract more comprehensive features than the hand-crafted method.
We conjecture that this is because the nonuniform patterns on the
sensor membrane make it difficult for the local hand-crafted fea-
tures to represent as much information about the physical charac-
teristics of the sensor.

Although training the CNNs with the pre-trained VGG-16
obtains the higher accuracy of prediction, the prediction still
needs to be improved. Currently, the number of the training im-
ages is insufficient to create the model. Thus, we need to increase
the size of the dataset by including images from more nitrate sen-
sors and more measurements. Also, data augmentation methods,
such as changing the illumination of the images can be used to
enlarge the dataset. On the other hand, the networks designed in
this paper are based on the VGG-16 architecture. We also con-
sider that it may be desirable to reduce the model complexity by

Table 1: Performance of the prediction models.

Model Training
Loss

Validation
Loss

Testing
Loss

Accuracy

CNNs 7.80 16.15 23.28 0.858
LS Model 28.24 31.71 26.52 0.747

reducing the number of convolutional layers to make the model
better fit our dataset.
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