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Abstract 
In a multi-nozzle piezo-electrically driven print head a large 

number of miniature and valveless pumps are integrated. In order 

to have a design with the smallest native nozzle pitch possible the 

pumps are placed as closely as possible next to each other. This 

implies that the length of the pump chamber has to be long 

compared to its cross-sectional dimensions in order to enable the 

piezoelectric actuator to generate enough volume displacement. 

The layout of such a pump is of the waveguide type and upon 

actuation waves start to travel back and forth through the pump 

chamber. The evolution of these waves in course of time depends 

on the reflection properties at the beginning and the end of the 

pump chamber, the beginning being the connection to the main ink 

supply and the end being the nozzle.  The attenuation depends on 

the viscosity of the ink used. At the end of the nozzle a meniscus is 

formed. In the case the meniscus retracts over a small distance into 

the nozzle its curvature increases and the capillary pressure 

increases. This effect forces the meniscus to move back to its 

original position. During outflow over a small distance the same 

happens. With increasing outflow the curvature increases and the 

capillary force opposing the motion increases accordingly. The 

capillarity builds a kind of mechanical spring action. This spring 

action together with the mass of fluid in the pump forms a mass-

spring system with its own oscillatory behavior. The resonance 

phenomenon is the so-called slosh-mode, all the fluid contained in 

the pump moves in phase against the surface tension spring. For 

higher order meniscus modes, however, the fluid motion is 

confined to the very close environment of the meniscus.  When the 

print head and the pulse are designed such that an overtone of the 

waveguide coincides with an axisymmetric higher order oscillation 

of the meniscus it is possible to make droplets that are much 

smaller than the standard droplet metered by the nozzle diameter. 

When such an overtone coincides with a non-axisymmetric mode, 

straightness errors may be induced. The paper will discuss an 

enhanced theory on higher order axisymmetric and non-

axisymmetric meniscus oscillations and their possible effects on 

droplet formation and straightness errors.    

Introduction 
 

In a multi-nozzle piezo-electrically driven print head a large 

number of miniature and valveless pumps are integrated [1]. In 

order to have a design with the smallest native nozzle pitch 

possible the pumps are placed as closely as possible next to each 

other. This implies that the length of the pump chamber has to be 

long compared to its cross-sectional dimensions in order to enable 

the piezoelectric actuator to generate enough volume displacement. 

One end of the pump chamber is connected to the nozzle, the other 

end connected to the main supply channel either directly or via a 

throttle. The layout of such a pump of the waveguide type is shown 

schematically in figure 1.  

 

 

 
 

Figure 1:  Schematic of one pump out of a print head of the 

waveguide type.  Shown is the closed end-closed end arrangement. 

For the open end-closed end design there is no throttle. Note that 

the pump chamber is much longer than the nozzle and the throttle.  

 

Upon actuation waves start to travel back and forth. The 

evolution of these waves in course of time depends on the 

reflection properties at the connection to the main ink supply and 

the connection to the nozzle [2].  The attenuation depends on the 

viscosity of the ink used and non-linear effects associated with 

partly filling of the nozzle. At the end of the nozzle a meniscus is 

formed between ink and air. This meniscus is supposed to be 

attached to the rim of the nozzle. When the meniscus retracts over 

a small distance (small means small compared to the radius of the 

nozzle) further into the nozzle, its curvature increases and the 

capillary pressure increases. This effect forces the meniscus to 

move back to its original position. During outflow over a small 

distance the same happens. With increasing outflow the curvature 

increases and the capillary force opposing the motion increases 

accordingly. The capillarity builds a kind of mechanical spring 

action. This spring action together with the mass of fluid in the 

pump forms a mass-spring system with its own oscillatory 

behavior. This resonance phenomenon is referred to as the so-

called slosh mode, all the fluid contained in the pump moves in 

phase against the surface tension spring. For higher order meniscus 

modes, however, the fluid motion is confined to the very close 

environment of the meniscus.  The response of a waveguide type 

of print head in the frequency domain is characterized by its key 

note and its spectrum of overtones. When the pulse is designed 

such that in its spectrum an overtone of the waveguide coincides 

with an axisymmetric higher order oscillation mode of the 

meniscus it is possible to make droplets that are much smaller than 

the standard droplet sized by the nozzle diameter [3]. When such 
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an overtone coincides with a non-axisymmetric mode, straightness 

errors can be induced. The higher order meniscus wave forms 

resemble the wave forms of the surface of a drop sitting on a 

harmonically excited horizontal surface with pinned contact line 

[4]. The present paper will discuss an enhanced theory on higher 

order axisymmetric and non-axisymmetric surface tension 

controlled meniscus oscillations and their possible effects on 

droplet formation and straightness errors. 

    

Slosh-mode frequency of a wave guide type 
print head  

 

The slosh mode kinematics is characterized by the fact that 

the fluid portions in the pump chamber (with length 𝐿 and cross-

section 𝐴), nozzle (radius 𝑅1, cross-section 𝐴1 = 𝜋𝑅1
2 and length 

𝐿1) and throttle (cross-section 𝐴2 and 𝐿2) are moving in phase (see 

for a schematic of such a print head figure 1) . For the calculation 

of the surface tension spring generated by the deforming meniscus 

it is assumed that the meniscus is spherically shaped. Gravity 

causes large menisci to deform; this effect does not take place as 

long as the size of meniscus is much smaller than the capillary 

length defined by [5]: 

 

𝑅1 ≪
1

𝜅
= √

𝛾

𝜌𝑔
                                                                                     (1) 

 

with 𝛾 being the surface tension, 𝜌 the density and 𝑔 the 

gravitational acceleration. 

When considering the window of operation for inkjet printing 

with regard to the material properties, the capillary length 

measures 1.4 – 2.7 mm (1.4 mm for 𝛾 = 0.02 N/m and 2.7 mm for 

𝛾 = 0.07 N/m, 𝜌 = 1000 kg/m3). For inkjet printing the nozzle and 

droplets measure up to 100 𝜇m across, so gravity effects can be 

ruled out. 

 

 
Figure 2:  Geometry of meniscus. 

 

In case the meniscus displaces only slightly (|𝑥1| ≪ 𝑅1, 𝑥1 

being the mean fluid displacement in the nozzle) the following 

geometrical relations hold true [6] (for negative 𝑥1, similar 

relations can be derived): 

 

𝑉 = 𝐴1𝑥1 =
1

6
𝜋ℎ(3𝑅1

2 + ℎ2) ,      𝑅1
2 + (𝑅𝑑 − ℎ)2 = 𝑅𝑑

2       (2)  

 

The height of the dome shaped meniscus is given by ℎ and the 

radius of curvature by 𝑅𝑑 as shown in figure 2. The outflowed 

volume is indicated by 𝑉. From (2) the radius of curvature can be 

derived in terms of the fixed parameter 𝑅1 and the variable ℎ: 

 

𝑅𝑑 =
𝑅1

2 + ℎ2

2ℎ
                                                                                      (3) 

 

For the case that ℎ ≪ 𝑅1 the expressions (2) and (3) can be 

simplified to:  

  

𝑅𝑑 ≈
𝑅1

2

2ℎ
, 𝑥1 ≈

1

2
ℎ                                                                      (4) 

 

The capillary pressure for small displacements (|𝑥1| ≪ 𝑅1) is 

given by the Young-Laplace equation [7]: 

 

𝑝𝑐𝑎𝑝 =
2𝛾

𝑅𝑑
≈ 8𝛾

𝑥1

𝑅1
2 = 8𝜋𝛾

𝑥1

𝐴1
                                                          (5) 

 

The force associated with the capillary pressure follows from: 

 

𝐹𝑐𝑎𝑝 = 𝑝𝑐𝑎𝑝𝐴1 = 8𝜋𝛾𝑥1                                                                   (6) 

 

Note that 𝐹𝑐𝑎𝑝 depends linearly on the displacement 𝑥1, 

similar to a mechanical spring [8]. For the slosh mode the fluid in 

the print head is assumed to be incompressible, so the total volume 

of fluid displacements in nozzle, pump section and throttle must be 

equal (𝑥 means mean fluid displacement in pump chamber and 𝑥2 

mean fluid displacement in throttle): 

 

𝐴1𝑥1 = 𝐴𝑥 = 𝐴2𝑥2                                                                              (7) 

 

Applying Newton’s law to the fluid mass contained in the 

nozzle the following result is obtained: 

 

𝐹𝑐𝑎𝑝 = 8𝜋𝛾𝑥1 = 𝑀𝑥̈1 = 𝜌 (𝐴1𝐿1 + 𝐴𝐿
𝐴1

2

𝐴2 + 𝐴2𝐿2

𝐴1
2

𝐴2
2) 𝑥̈1         (8) 

 

Solving this equation for harmonic motion the resonance 

frequency is given by: 

 

𝑓𝑠𝑙𝑜𝑠ℎ =
1

2𝜋 √

8𝜋𝛾

𝜌 (𝐴1𝐿1 + 𝐴𝐿
𝐴1

2

𝐴2 + 𝐴2𝐿2
𝐴1

2

𝐴2
2)

                                  (9) 

 

Following the general design rules of an inkjet print head: 

 

𝐴 ≫ 𝐴1, 𝐴2,       𝐴2 ≈> 𝐴1 ,    𝐿 >≫ 𝐿1, 𝐿2 ≫ 𝐿1                 (10) 

 

The middle term between the brackets of the denominator under 

the square root dominates and the slosh mode frequency for a wave 

guide type of inkjet print head is given approximately by: 

  

𝑓𝑠𝑙𝑜𝑠ℎ ≈
1

2𝜋
√

8𝜋𝛾𝐴

𝜌𝐿𝐴1
2                                                                           (11) 
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Higher order symmetric meniscus oscillations  
 

For higher order meniscus motions only the fluid close to the 

meniscus is involved, this in contrast to the slosh mode for which 

all fluid in the system must be considered. The analysis is confined 

to frictionless fluids (dynamic viscosity 𝜇 = 0). To describe the 

flow a cylindrical co-ordinate system will be used with 𝑧 the co-

ordinate measuring the distance from the meniscus upwards into 

the nozzle and 𝑟 the radial co-ordinate measuring the distance from 

the center line of the nozzle. For the fundamental motion of the 

meniscus the following ansatz will be posed:  

 

𝑤1(𝑟, 𝑡) = 𝐵[1 + 𝜆𝐽0(𝑘𝑟)] sin 𝜔𝑡,     𝑤1 ≪ 𝑅1                          (12) 

 

The small amplitude of the harmonic motion with radian 

frequency 𝜔 is given by 𝐵. 𝐽0(𝑘𝑟) is a zeroth order Bessel function 

of the first kind [9]. The constant 𝜆 follows from the argument that 

at the nozzle wall the displacement of the meniscus is zero: 

 

𝜆 = −
1

𝐽0(𝑘𝑅1)
                                                                                    (13) 

 

The constant 𝑘 is given by the fact that the fluid motion is 

local and that there is no net volume displacement (𝑉 volume): 

 

𝑉 = 2𝜋𝐵 ∫ [1 + 𝜆𝐽0(𝑘𝑟)]𝑟𝑑𝑟 = 2𝜋𝐵𝑅1
2

𝑅1

0

[
1

2
−

𝐽1(𝑘𝑅1)

𝑘𝑅1𝐽0(𝑘𝑅1)
] (14) 

 

The condition 𝑉 = 0 is fulfilled for the first time for (see 

figure 3, index refers to first mode): 

 

𝑘1𝑅1 = 5.135622,   𝜆1 = 7.559745                                              (15) 

 

 

 
 

Figure 3:  Amplitude of meniscus motion according to (12) 

for  𝑘1𝑅1 = 5.135622 and 𝜆1 = 7.559745 (first mode). 

 

 

The fluid velocity at the meniscus is given by: 

 
𝑑𝑤1

𝑑𝑡
= 𝐵𝜔[1 + 𝜆1𝐽0(𝑘1𝑟)] cos 𝜔𝑡                                                  (16) 

 

Suppose the component of the velocity vector in the fluid in 

axial direction (𝑧-direction) away from the meniscus is: 

 

𝑣𝑧(𝑟, 𝑧, 𝑡) = 𝐵𝜔𝐹(𝑧)[1 + 𝜆1𝐽0(𝑘1𝑟)] cos 𝜔𝑡 ,    𝐹(0) = 1       (17) 

 

Using the equation of continuity [10] the component of the 

velocity vector in 𝑟-direction can be determined: 

𝑣𝑟(𝑟, 𝑧, 𝑡) = −𝐵𝜔 
𝑑𝐹(𝑧)

𝑑𝑧
𝑟 [

1

2
+

𝜆1

𝑘1𝑟
𝐽1(𝑘1𝑟)] cos 𝜔𝑡                (18) 

 

Substitution of the expressions for the components of the 

velocity vector into the components of the equation of motion 

yields [10] (skipping the convective terms, this can be justified by 

the fact that only small deviations from the equilibrium meniscus 

position are considered, 𝐵 small): 

 

−𝜌𝐵𝜔2  
𝑑𝐹(𝑧)

𝑑𝑧
𝑟 [

1

2
+

𝜆1

𝑘1𝑟
𝐽1(𝑘1𝑟)] sin 𝜔𝑡 =

𝜕𝑝

𝜕𝑟
 

                                                                                      (19) 

𝜌𝐵𝜔2𝐹(𝑧)[1 + 𝜆1 𝐽0(𝑘1𝑟)] sin 𝜔𝑡 =
𝜕𝑝

𝜕𝑧
 

 

In both components of the equation of motion for most values 

of 𝑟 in the expressions between brackets the terms involving 

Bessel functions dominate. Retaining only the Bessel functions, 

differentiation of the 𝑟-component of the equation of motion with 

respect to 𝑧 and differentiation of the 𝑧-component of the equation 

of motion with respect to 𝑟 results in an equality that can only be 

fulfilled as long as the function 𝐹(𝑧) obeys: 

 

𝑑2𝐹

𝑑𝑧2
− 𝑘1

2𝐹 = 0 

                                                                                      (20) 

𝐹 = 𝑒−𝑘1𝑧 
 

This solution for 𝐹 describes a penetration phenomenon, its 

value decays to zero for large 𝑧. The distance, 𝑧𝑝𝑒𝑛𝑒𝑡𝑟𝑎𝑡𝑖𝑜𝑛, at 

which the exponential has decreased to 5% is given by: 

 

𝑘1𝑧𝑝𝑒𝑛𝑒𝑡𝑟𝑎𝑡𝑖𝑜𝑛 = 𝜋, 𝑧𝑝𝑒𝑛𝑒𝑡𝑟𝑎𝑡𝑖𝑜𝑛 =
𝜋

𝑘1𝑅1
𝑅1 = 0.612 𝑅1   (21) 

 

Indeed the fluid motion belonging to the first axisymmetric 

higher order oscillatory mode has a limited reach. The components 

of the velocity vector are: 

 

𝑣𝑧(𝑟, 𝑧, 𝑡) ≈ 𝐵𝜔 𝑒−𝑘1𝑧[1 + 𝜆1 𝐽0(𝑘1𝑟)] cos 𝜔𝑡 
                                                                                        (22) 

𝑣𝑟(𝑟, 𝑧, 𝑡) ≈ 𝐵𝜔 𝑒−𝑘1𝑧 [
1

2
𝑘1𝑟 + 𝜆1𝐽1(𝑘1𝑟)] cos 𝜔𝑡 

 

The resonance frequency will be calculated using Rayleigh’s 

principle [8,12]. This principle states that for a harmonically 

moving non-damped system the sum of the potential energy and 

the kinetic energy stays constant (no losses). The potential energy 

is maximal at maximum displacement (velocity zero). The kinetic 

energy is maximal at maximum velocity (displacement zero).  

The maximum potential energy equals the increase in surface 

energy at maximum displacement (𝜔𝑡 = 𝜋 2 + 𝑛𝜋,⁄  𝑛 = 1,2, … ): 

 

𝑈𝑚𝑎𝑥 = 𝛾∆𝐴𝑚𝑎𝑥 = 𝛾 [2𝜋 ∫ 𝑟𝑑𝑟√1 + (
𝑑𝑤

𝑑𝑟
)

2𝑅1

0

− 𝜋𝑅1
2] 

 

= 𝛾 {2𝜋 ∫ 𝑟𝑑𝑟√1 + [𝐵𝜆1𝑘1𝐽1(𝑘1𝑟)]2
𝑅1

0

− 𝜋𝑅1
2} 
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= 𝛾 {2𝜋 ∫ 𝑟𝑑𝑟 (1 +
1

2
[𝐵𝜆1𝑘1𝐽1(𝑘1𝑟)]2)

𝑅1

0

− 𝜋𝑅1
2} 

 

= 𝛾𝜋𝐵2𝜆1
2𝑘1

2 ∫ 𝑟𝑑𝑟𝐽1
2(𝑘1𝑟)

𝑅1

0

 

 

= 263.169 𝛾𝐵2                                                                                     (23) 
 

 The maximum kinetic energy (meniscus is flat, 𝜔𝑡 = 0 + 𝑛𝜋,
𝑛 = 1,2,3, …) is given by (skipping writing down all the operations 

involving Bessel functions [11]): 

 

𝑇𝑚𝑎𝑥 =
1

2
𝜌2𝜋 ∫ ∫ 𝑟𝑑𝑟𝑑𝑧(𝑣2

2 + 𝑣𝑧
2)

∞

0

𝑅1

0

 

 

= 2.52094 𝜌𝑅1
3𝜔2𝐵2                                                                        (24) 

 

As the maximum potential energy must be equal to the 

maximum kinetic energy the first resonance frequency must be: 

 

𝑈𝑚𝑎𝑥 = 𝑇𝑚𝑎𝑥  →      𝑓1 = 1.66√
 𝛾

 𝜌𝑅1
3                                            (25) 

 

The numerical value in front of the square root is about equal 

to the value reported in [3] (1.46 instead of 1.66) and in [1] (1.68 

instead of 1.66). For a nozzle of 50 𝜇m diameter the resonance 

frequency calculated with (25) is 94 kHz, for a nozzle of 25 𝜇m 

diameter 266 kHz (𝛾 = 0.05 N/m and 𝜌 = 1000 kg/m3).  

 

As explained in [3] the higher order mode reduces the 

effective nozzle radius for droplet formation. The effective nozzle 

radius can be estimated by considering the circle for which the 

amplitude of the meniscus motion is zero: 𝑟 = 0.52129𝑅1, 

reducing the droplet volume by a factor of about 7.  

 

The method outlined in this section can be used to calculate 

higher order modes as well. The second mode is given by (see 

figure 4): 

 

𝑘2𝑅1 = 8.41725,   𝜆2 = −15.5085                                              (26) 

 

 

 
 

Figure 4:  Amplitude of meniscus motion for the second 

axisymmetric mode according to formula (12) with: 𝑘2𝑅1 =
8.41725 and 𝜆2 = −15.5085. 

 

 

The penetration depth of the second axisymmetric mode is: 

 

𝑘2𝑧𝑝𝑒𝑛𝑒𝑡𝑟𝑎𝑡𝑖𝑜𝑛 = 𝜋, 𝑧𝑝𝑒𝑛𝑒𝑡𝑟𝑎𝑡𝑖𝑜𝑛 =
𝜋

𝑘2𝑅1
𝑅1 = 0.3732 𝑅1     (27) 

 

The reach of the second mode has been reduced by a factor of 

roughly two compared to the reach of the first mode and is even 

more locally. The resonance frequency can be calculated following 

the same procedure as given for the first mode, with result: 

 

𝑓2 = 3.476√
 𝛾

 𝜌𝑅1
3                                                                                (28) 

Non-axisymmetric meniscus oscillations  
 

At any higher order non-axisymmetric meniscus oscillation it 

is about the local motion of fluid against higher order non-

axisymmetric distortions of the meniscus. The fundamental one is 

an asymmetric mode, schematically shown in figure 5.  

 

 

 
Figure 5: Schematic of non-axisymmetric meniscus distortion. 

 

This problem is essentially three dimensional, but a guess 

about the kinematics and dynamics can be obtained by considering 

a 2-D problem of a slot of infinite length and width 2𝑅1 filled with 

ink in which a meniscus is moving harmonically with radian 

frequency 𝜔 up and down as shown in figure 5. 

 

The displacement of the meniscus can be described by (the 

index 𝑛𝑎1 stands for non-axisymmetric first mode): 

 

𝑤𝑛𝑎1 = 𝐵 sin
𝜋𝑥

𝑅1
sin 𝜔𝑡                                                                      (29) 

 

The velocity distribution along the meniscus is given by: 

 
𝑑𝑤𝑛𝑎1

𝑑𝑡
= 𝐵𝜔 sin

𝜋𝑥

𝑅1
cos 𝜔𝑡                                                              (30) 

 

The non-zero components of the velocity vector inside the 

fluid are 𝑣𝑥 and 𝑣𝑧, defined with respect to a Cartesian co-ordinate 

system 𝑂𝑥𝑧 (𝑧 measures the distance from the meniscus upwards 

and 𝑥 gives the distance from the center plane as depicted in figure 

5).  

Away from the meniscus for the velocity component 𝑣𝑧 the 

following ansatz will be used: 

 

𝑣𝑧 = 𝐵𝜔𝐹(𝑧) sin
𝜋𝑥

𝑅1
 cos 𝜔𝑡 ,    𝐹(0) = 1                                     (31) 
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With the equation of continuity [10] 𝑣𝑥 can be found: 

 

𝑣𝑥 = 𝐵𝜔
𝑑𝐹

𝑑𝑧

𝑅1

𝜋
cos

𝜋𝑥

𝑅1
 cos 𝜔𝑡                                                         (32) 

 

Substitution of (31) and (32) into the components of the 

equation of motion [10] and neglecting the convective terms (small 

of order 𝐵2): 

 

𝜌𝐵𝜔2
𝑑𝐹

𝑑𝑧

𝑅1

𝜋
cos

𝜋𝑥

𝑅1
 sin 𝜔𝑡 =

𝜕𝑝

𝜕𝑥
 

(33) 

𝜌𝐵𝜔2𝐹(𝑧) sin
𝜋𝑥

𝑅1
 sin 𝜔𝑡 =

𝜕𝑝

𝜕𝑧
 

 

 Differentiating the 𝑥-component of the equation of motion 

with respect to 𝑧 and the 𝑧-component with respect to 𝑥 delivers a 

differential equation for 𝐹(𝑧) with solution: 

 

𝑑2𝐹

𝑑𝑧2 −
𝜋2

𝑅1
2 𝐹 = 0,    𝐹 = 𝑒

−
𝜋𝑧
𝑅1                                                             (34) 

 

 This solution describes a penetration problem. The negative 

exponential decays fast to zero. The distance over which the 

exponential has decreased to 5 %, 𝑧𝑝𝑒𝑛𝑒𝑡𝑟𝑎𝑡𝑖𝑜𝑛, is given by: 

 
𝜋𝑧

𝑅1
= 𝜋,    𝑧𝑝𝑒𝑛𝑒𝑡𝑟𝑎𝑡𝑖𝑜𝑛 = 𝑅1                                                              (35) 

 

 The motion of the fluid belonging to the first non-

axisymmetric mode is limited to a depth of order 𝑅1. 

 

The components of the velocity vector read: 

 

𝑣𝑧 = 𝐵𝜔 𝑒
−

𝜋𝑧
𝑅1 sin

𝜋𝑥

𝑅1
 cos 𝜔𝑡 

(36) 

𝑣𝑥 = −𝐵𝜔𝑒
−

𝜋𝑧
𝑅1 cos

𝜋𝑥

𝑅1
 cos 𝜔𝑡 

 

Again the resonance frequency will be calculated using 

Rayleigh’s principle [8,12]. For a harmonically moving non-

damped system the sum of the potential energy and the kinetic 

energy stays constant (no losses). The potential energy is maximal 

at maximum displacement (velocity zero and kinetic energy zero). 

The kinetic energy is maximal at maximum velocity (displacement 

zero and potential energy zero).  

 

The maximum kinetic energy per unit length equals: 

 

𝑇𝑚𝑎𝑥 = 2
1

2
𝜌𝐵2𝜔2 ∫ ∫ 𝑒

−2
𝜋𝑧
𝑅1 (sin2

𝜋𝑥

𝑅1

𝑅1

0

∞

0

+ cos2
𝜋𝑥

𝑅1
)𝑑𝑥𝑑𝑧 

 

=
1

2𝜋
𝜌𝐵2𝑅1

2𝜔2                                                                                     (37) 

 

The maximum potential energy per unit length follows from 

the maximum increase in free surface per unit length: 

 

𝑈𝑚𝑎𝑥 = 𝛾∆𝐴 = 𝛾 [2 ∫ 𝑑𝑥√1 + (
𝑑𝑤

𝑑𝑥
)

2𝑅1

0

− 2𝑅1] 

≈ 𝛾
𝜋2

2
𝑅1 (

𝐵

𝑅1
)

2

                                                                               (38) 

 

From the condition that the maximum potential energy equals 

the maximum kinetic energy the resonance frequency of the first 

non-axisymmetric oscillatory mode is found [13]: 

 

𝑓𝑛𝑎1 =
1

2𝜋
√𝜋3

𝛾

𝜌𝑅1
3 = 0.886√

𝛾

𝜌𝑅1
3                                              (39) 

 

The pre-factor of 0.886 is close to the value reported in [13] 

(0.596 compared to 0.886 using a different guess of the 

displacement field). 

 

Discussion 
 

In this paper expressions have been derived for surface 

tension related resonance phenomena in inkjet print heads. The 

first resonance phenomenon discussed is called the slosh mode. 

For this mode all fluid in the print head moves in phase against the 

surface tension spring in the nozzle. The slosh mode frequency is 

usually much lower than the key note and overtone frequencies 

associated to wave effects in the long pump chamber. Such low 

frequency motions interfere with the droplet motion because at the 

moment of pulsing at high frequency the position of the meniscus 

follows the slosh mode motion and can be either slightly retracted 

or somewhat outside the nozzle. Droplets from a retracted 

meniscus are smaller and faster compared to droplets jetted from 

an outside meniscus. It should be noted that the slosh mode 

frequency depends on the design of pump. 

For higher order meniscus oscillations the motion of the fluid 

is confined to the close neighborhood of the meniscus. The extent 

over which the meniscus oscillation penetrates into the fluid 

contained in the nozzle is of the order of magnitude of the radius of 

the nozzle (see (21) and (34)). Much less mass is moving back and 

forth and therefore the associated resonance frequencies are much 

higher. As explained in [12] axisymmetric higher order meniscus 

oscillations can be used to generate droplets of much smaller size 

than the nozzle diameter. If in the spectrum of the pulse there is a 

frequency that coincides with the resonance frequency of an 

axisymmetric mode, the meniscus is set in motion and small 

droplets can be jetted [3]. 

When in the spectrum of the pulse a frequency is present that 

coincides with the resonance frequency of a non-axisymmetric 

mode, upon actuation straightness errors may occur. A non-

axisymmetric mode can be triggered by a small imperfection of the 

rim of the nozzle.   

Higher order modes are generated by the leading and trailing 

edges of the pulses used for jetting droplets. So changing the 

steepness of these edges, the strength of higher order modes can be 

controlled [1].  

The resonance frequencies of the higher order surface tension 

driven meniscus oscillation modes do not depend on the design of 

the print head as a whole, but only depends on the radius of the 

cylindrically shaped nozzle considered in this paper. 
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