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Abstract

Counterfeiting of currency globally remains a significant
problem. And according to the authorities, a large portion of
the fake currency is produced by Small Office Home Office inkjet
printers. Therefore, a new inkjet printer forensics technology
would be useful to identify the model of the source printer given
a print sample. In our paper, we study the print patterns from
15 low-cost inkjet printers that are being sold on the market and
examine test targets at the microscopic level. We design 4 printer
intrinsic features including Dot Size, Dot Density, Average Dis-
tance to Nearest Dot, and Nearest Dot-Sector Density Function
to characterize the behavior of inkjet printers. Furthermore,
we extend our research and develop a machine learning based
Printer Identification System. Unlike handcrafted features that
have intuitive meaning to human viewers, an alternative set of in-
trinsic features are extracted from the Residual Neural Network,
and based on the Neural Network features, a Support Vector Ma-
chine classifier is trained and is able to perform the printer model
classification. Our evaluation shows that the proposed system
produces robust and reliable results.

Introduction

In a 2006 report, The U.S. Secret Service estimated that 1 in
10,000 currency notes in circulation is a counterfei(ﬂ In Europe,
Small Office Home Office (SOHO) inkjet printers now account
for over 50% of the production of counterfeit currency notes. Au-
thorities charged with tracking counterfeit currency to its source
have a range of resources at their disposal. Even if these tools
do not definitively identify the particular unit that was used to
produce a counterfeit note, any information that they provide can
prove to be a valuable aid to the investigation.

There are many possible approaches to forensic printer
identification [1]. Some of these methods require labor inten-
sive effort by a highly trained observer. Examples include in-
spection of prints under a microscope [2], chemical analysis of
the inks used to print the suspect currency [3], and detection of
spur marks from the gears used to advance the media through the
printer [4]. Other methods are based on image analysis, includ-
ing analysis of the structure of printed character glyphs [5} 6],
analysis of page geometric distortion [7], analysis of halftone dot
structure [8]], and analysis of the memory contents of the suspect
printing device, combined with analysis of the printed page [9].

In this paper, we focus on the development of intrinsic
printer features for SOHO inkjet printers that are based on the
analysis of the printer dot structure in highlight regions. In con-
trast to Ref. [8] above, which considers only laser electropho-
tographic printers that use periodic, clustered-dot halftoning pat-
terns, here we consider the spatial arrangement and size of indi-
vidual ink drops in dispersed-dot, aperiodic (stochastic) halftone
patterns.

!For the full report, go to: https://www.federalreserve.gov/
boarddocs/rptcongress/counterfeit/counterfeit2006.pdf
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We also introduce the Printer Identification System (PIS)
that can autonomously identify the source machine based on a
given print sample. This system is made possible by the power
of recent developments in Deep Neural Networks (DNNs). A
number of effort has been made to combine DNN and halftoning.
Moon et al. [10] characterized the Inkjet printer model using
Deep Neural Networks. Ferreira et al. [11] used a combination
of Neural Netwokr classifiers and external classifiers to do laser
printer classification on low resolution scanned images. Here,
we use Residual Neural Network (RNN) [12] to classify high-
resolution inkjet print captures.

Experiment Design and Sample Acquisition

The goal of this paper is to develop features that can serve
as intrinsic signatures for SOHO inkjet printers. As mentioned
above, inkjet printers use dispersed-dot aperiodic (stochastic)
halftoning algorithms. We specifically choose to analyze the
halftone dot patterns in highlight regions, since such regions
most clearly illustrate the spatial pattern of dots (each dot cor-
responds to a single inkjet drop), and the size of these dots.

To support this research project, we purchased 16 inkjet
printers ranging in price from $30 USD to $90 USD. This printer
set consisted of 9 different models from 4 major SOHO inkjet
printer manufacturers, namely HP, Cannon, Epson, and Brother.
In addition, for three of these models, we purchased three units of
each model in order to explore unit-to-unit variations within the
same printer model. One of the printers was dead on arrival, so
all of our experiments were based on 15 printers. As a means of
identification, each of the units was assigned an alphabet ranging
from A to H, among which Printers C, D, E are from the same
manufacturer, and Printers F, G, and H are from another manu-
facturer.

Test Page Design

For our paper, we designed a test page consisting of
constant-tone patches with gamma-corrected absorptance levels
of 21%, 15%, 10%, 5%, and 0% for each of three colorants
(CMY). Our analyses are entirely based on the constant-tone dot
patterns. We printed the test page with each of the 15 target print-
ers, and captured images of selected regions using a QEA PIAS-
II camera (Resolution 7663.4 dpi with 3.2mm x 2.4mm field of
view (1024 x 768 pixels). We found that when the cyan, ma-
genta, and yellow level is 5%, the dots are dense enough so that
their spatial relationship is prominent, yet dot coalescence is rea-
sonably less frequent. For the simplicity of this paper, the 5%
cyan, 5% magenta, and 5% yellow patches will be referred as
Triple 5 patches from now on.

Another two vital settings in our experiments are the printer
driver settings and the media used. All the pages are printed in
the best print quality mode, and the resolution is set to 600 dpi.
We choose 600 dpi because this is the standard resolution for
SOHO inkjet printers. Also more intrinsic features of the dot
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spatial relationships can be shown by controlling all the prints to
have the same resolution. As for the media, since we target the
currency counterfeiting issue, it is desired to study the printer
behavior with similar media. Note that some countries have
switched to polymer banknotes in an effort to combat counter-
feiting and reduce costs. Printing on this special media is beyond
our research area. Paper-based currency like the U.S. Dollar is
what we try to simulate. According to the Bureau of Engraving
and Printing”| US paper currency is made up of 75% cotton and
25% linen. Therefore, in our experiment, we acquired two types
of linen paper from Envelopes.com and Southworth. We also
used Boise Multi-Use Copy paper in our experiment, as it rep-
resents plain paper that is daily used and most accessible among
all the paper types.

Our second half of the experiments is for the classification.
This test page consists of 40 repetition of a group of test tar-
gets. These test targets are 5% cyan, 5% magenta, 5% yellow, 5%
black and Triple 5, respectively. These patches are designed to be
about 3mm x 2mm to fit in the field of view of the QEA PIAS-IIL.
The bar on top of the patches is designed to help the user align the
field of view of the camera with the lattice of printer-addressable
points.

(a) (b)

Figure 1: Designed test pages. @) is the Phase I test page that
is used to select a valid target; (D) is the phase II test page that
contains same tone color patches replicated across the page.

Printer Characterization

We propose four different features to characterize the dot
patterns from the captures shown in Fig. JJRow 1: Dot Size, Dot
Density, Average Distance to the Nearest Dot, and Nearest Dot-
Sector Density Function. All our analyses are based on separate
color channels, so we will do color separation first.

Colorant Separation

A colorant channel separation is desired to study the print-
head characteristics individually. The following processes are
used to obtain different channels:

Media pixel elimination. As shown in Fig. JJRow 1, paper
pixels are represented as white pixels in the captures, therefore
we are able to identify the media/white pixels by examining a
modified measure of color saturation S in CIELab color space

C*Z

S=T

ey

2For more information on U.S. currency and its paper and ink, see:
https://wuw.moneyfactory.gov/hmimpaperandink.html
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where ¢*? is the square of the chroma value, and *? =a*? +b*2.
We use ¢*2 instead of ¢* in saturation calculation to balance the
significance of the chroma and the lightness when the Lightness
value is small. Since we only have yellow, magenta, and cyan
ink, if a pixel is inked, it can only be one of, or a combination
of these three primary colors (it is unlikely to have all three ink
drops overlap together in such a light color, as shown in Fig. 2]
Row 1). Therefore, as shown in Fig. [3] the saturation for inked
pixels is higher, and other un-inked pixels have relatively low
saturation value. Hence, we can eliminate the media pixels by
thresholding S. Our experiment shows that when the threshold is
3, the separation performance is optimal.

Ink separation. To separate different ink colors, we mea-
sure the hue angle A, for every inked pixel.

*

hap = arctan(Z—*). 2)

The quadrant is determined by the signs of the a* and the b*,
and all the angles are calculated in radians. As shown in Fig.
[ the majority of the color pixels have the hue angle between
[-2, 2], where three peaks can be identified: (from left to right)
cyan ink peaks around -2, magenta ink peaks around -0.3, and
yellow peaks around 1.5. Therefore we can separate the colored
pixels by determining the closest peak. Some results are shown
in Fig. 2] Although it is rare to see in these light color patches,
ink overlapping and coalescence still can happen. We define the
color pixels whose hue angles are between two adjacent peaks as
overlapping pixels; and they count to both ink maps. Note that
we are viewing the unwrapped histogram in Fig. [d] The real hue

() (b) (©

Figure 2: Sample separation results. The first row shows the orig-
inal captures. The second row shows the images after eliminat-
ing the white media pixels. And the remaining three rows show
the cyan, magenta and yellow channel, respectively. Column
shows the results for Printer B, Column (b) shows separation re-
sults for printer D, Column (c) shows the results for Printer H.
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Figure 3: Distribution of pixels in capture images according to
saturation. The saturation has a peak around 3 and a long tail as
the saturation value increases.

Figure 4: Distribution of the pixels in capture images according
to the hue. The histogram has three peaks around -1.7, -0.3, and
1.5 (rad).

angle is distributed as a closed ring. Therefore, the cyan peak
should also be adjacent to the yellow peak.

After the procedure illustrated above, we also would like to
filter out noisy pixels. Firstly, insignificant clutters of pixels can
be found in the captured images that are too small to be con-
sidered as an individual ink drop. Thus, we only consider dot-
clusters that have more than 30 pixels. Secondly, pixels near a
capture boundary should be eliminated from further study, as the
full picture of their surroundings is unclear. Therefore, we only
consider dots that are at least 50 pixels away from any of the
boundaries. Then, we can perform connected component analy-
sis to determine the different drops. Once we have a list of drops,
data can be gathered about the drops such as their size, location,
and compactness.

Dot Statistics

The print head and the ink used are critical aspects of the
inkjet printer: print heads control the size of the ink drops and
other behaviors of the jets, and the chemical nature of the ink
determines the appearance of the prints and the ink spread on
the paper, hence changing the dot shape. However, for a certain
printer model, the print heads deployed and the ink selection are
usually fixed, leading to consistent dot statistics as a unique fea-
ture shared within the same model. Therefore, we studied the
dot statistics of the halftone image microscopic structure. And
for each ink, we created the following features: Dot Area and
Dot Density.

Dot Area

For Dot Area, we use the number of camera pixels to rep-
resent the size of the printed dot. Since we are using the same
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Figure 5: Average cyan, magenta, and yellow dot sizes compari-
son over all printer models.
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Figure 6: Average cyan, magenta, and yellow dot counts (number
of dot pixel-clusters contained within the capture images) com-
parison over all printer models. The error bars show +/- 1 stan-
dard deviation.

magnification throughout all the captures, the number of pixels
is proportional to actual dot size measured in mm?. The dot size
comparison over all the models is shown in Fig. [5] It can be seen
that the printers models from same manufacturer, for example,
Printers C, D, and E, have similar dot sizes. Another three print-
ers, Printers F, G, and H are also from the same manufacturer;
and therefore their yellow dots are much bigger than are those
for the other colorants. Note that Printer F is from a different
series than Printer G and H; and the size of the dots from Printer
F is quite different than the size of the dots from Printers G and
H.

Dot Density

Another feature that we find to be distinctive is the dot den-
sity, or dot pixel-cluster count per capture. As shown in the Fig.
[ different printer models have not only very different overall
dot densities (Row 2 in Fig. |Z[), but also different dot densities in
the three different channels (Rows 3, 4, and 5 in Fig. Q) Hence,
we evaluate all the captures and plot the bar chart on dot counts
in Fig.[6] As seen in the figure, the dot densities of all the printers
are very different: Printer B has overall the smallest number of
dots across all 8 models and 3 colorants. Printers F, G, and H all
have smaller numbers of yellow dots, but the portions of cyan,
magenta and yellow dots are quite different; Printers A, C, D, ad
E have relatively similar proportions of dots across the three col-
orants with nearly the same densities for cyan and magenta. But
the overall dot densities for Printer E are significantly larger than
are those for Printers A, C, and D.

Spatial Distribution

Other than looking into the dot statistics, it is also very im-
portant to characterize the spatial dot distribution within each
colorant. We propose two metrics to characterize the spatial dis-
tribution between the dots.
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Figure 7: Comparison of Averygég Distance to the Nearest Dot
(ADND) for the cyan, magenta, and yellow dot separations over
all the printer models.

Average Distance to the Nearest Dot (ADND)

Average Distance to the Nearest Dot (ADND) is a measure
of how close together the dots are. For each dot that is fully
surrounded by its neighbors, we find out the distance between
this dot and its nearest dot. Then, we are able to determine the
ADND by average all the distances obtained in the capture im-
age. As shown in Figure |/} we can see that Printers F, G, and
H have a very distinct dot spatial arrangement compared to the
others. The yellow dots are much sparser compared with other
colorants. This is also consistent with the data shown in the Figs.
E] and@ where we see that the yellow dots are much larger, and
fewer in number for Printers F, G, and H, than for the other print-
ers. Meanwhile Printers C, D, and E have similar spatial distri-
butions, as they all from the same manufacturer.

Small ADND values also might also indicate a phenomenon
that we call dot pairing. Dot pairing occurs when dots of the
same colorant frequently occur in close, often nearly horizontal,
proximity to each other. Note that unlike a major dot and its
satellite dots, which is another distinct phenomenon that can be
observed in high resolution captures, dot pairing is more consis-
tent and the two dot sizes are relatively similar. It happens more
frequently among the printers with smaller drop size. A set of
examples are given in Fig. [8] As can be seen in the figure, cyan
dots or magenta dots are paired together horizontally. The effect
of dot pairing on the visual appearance of the print is not inves-
tigated in this study. But this phenomenon is very distinct and
could be a good indicator of the printer model.

(a) Printer F (b) Printer G (c) Printer H
Figure 8: Examples of dot pairing. Printer F has the most fre-
quent dot pairing phenomena, Printer G has less, and Printer H

has the least.

Nearest Dot-Sector Density Function (ND-SDF)

The ADND metric draws a picture of how individual dots
are spaced in the print: the biggest circle, centered at the centroid
of the dot, which does not have any other dots inside of it. This
concept of the dot placement measurement does not take into
account the dot alignment or any other directional information.
Therefore, we propose the second measure Nearest Dot-Sector
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Figure 9: Nearest Dot-Sector Density Function (ND-SDF) con-
cept

(a) Printer A (b) Printer B (c) Printer C (d) Printer D

(e) Printer E

(f) Printer F

(g) Printer G (h) Printer H

Figure 10: ND-SDF of cyan dots across all 8 printer models.

Density Function (ND-SDF). Inspired by the phenomenon of dot
pairing, the ND-SDF metric is designed to capture the orienta-
tion of the dot and its nearest neighboring dot. The algorithm is
described as below:

1. Setup 7 sectors as shown in Fig. B} (a);

2. For color channel c, calculate S., the set of all the dots that
are not near a bounary of the capture image field of view;

3. For each dot d € S, search for the nearest dot in one of the
sectors shown in Fig. @@) If such a dot d’ exists, do:

(a) Calculate the elevation or depression angle o between d
and d’;

(b) Register & to the corresponding sector i by adding 1 to
count;

4. Normalize each individual sector value by dividing by the
sum of all sector values.

Note that to avoid repetition, only dots in Quadrants I and
IV are considered during the calculation. An example ND-SDF
calculation is given in the Fig. P](B). The cyan ND-SDF his-
togram is shown in Fig. [T0] We choose to show the cyan ND-
SDF, as the cyan dots are more likely to pair together than other
colorants. We can see that both Printers A and F have very high
values in Bins -1, 0, and 1. This means that most of the nearest
dot pairs accumulate around the same height. Our findings also
correspond to what can be observed in Fig. [§]

Printer Identification System (PIS)

In the previous section, some hand-crafted features are en-
gineered and designed to capture the characteristics of the mi-
croscopic structures from different prints. Although handcrafted
features are intelligible to human examiners, there are some
drawbacks:

© 2018 Society for Imaging Science and Technology



Figure 11: Example of retrieving 224 x 224 images from original
capture.

1. Itis rather tricky to model dot behaviors, as the inkjet imag-
ing pipeline and inkjet marking engine technology is rather
complex, and also stochastic rather than deterministic.

2. Handcrafted features cannot cover all the features seen and
processed by the human viewers.

3. When future new printers join in the study, more features
might need to be designed.

Therefore, a machine-learning based Printer Identification
System (PIS) that can capture features autonomously is preferred
for an anti-counterfeiting effort. Recent years have witnessed
the rapid development of Deep Neural Networks (DNNs), and
many DNN image object recognition applications have been used
in our daily life. Hence, we aim to exploit the DNN’s object
recognition power to build a printer model classifier. We choose
the Residual Network (RNN) [12], as it is one of the most popular
and accurate networks in terms of image recognitiorﬂ and RNN
also avoids some problems for network training. Here, we use
ResNet50, a 50 layer version of the Network. Compared with
ResNet50, other variations (101 layers or 152 layers) have deeper
structures, which means that they are more prone to overfitting,
while producing marginal accuracy gain.

First, steps should be taken to transform the data collected
from the second phase experiment on 6 printers to data that can
be used by the network. For each printer, we acquire more than
40 Triple 5 patches using PIAS-II, and cut the each capture into
224 x 224 smaller images which is the acceptable input size of
the network. As illustrated in the previous section, it is desirable
to avoid the dot patterns around the image boundaries. Thus, we
only collect 12 images from each original capture as shown in
Fig. Therefore, more than 3,500 image patches are collected
as the training and testing dataset. Figure [I2] presents some ex-
amples of the preprocessed input images.

Then, the pre-trained ResNet50 model is used to extract the
features from the input images. Since all the weights in the model
have been pre-trained using ImageNet [13]], the model is well
adapted to recognize both high level object details, as well as
low level image features. However, original ResNet50 model
outputs an label of an object in real life, for instance car, cat,
dog, etc.; and this does not correspond to the desired labels in
our task. Hence, we extract all the features from the second last
layer and train another classifier, which is much simpler, lighter
weight, and equally effective. The ResNet50 model produces

3ResNet50 won st place in the ILSVRC 2015 classification com-
petition with top 5 error rate of 3.57%. For more information: http:
//image-net.org/challenges/LSVRC/2015/index
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Figure 12: Sample ResNet50 input images. All the images are
cropped to size 224 x 224. Tmage (@) is from Printer D, image
(B is from Printer G, and image (c) is from Printer B.

1.0

actual

0.0

predicted
Figure 13: The confusion matrix of the classification results.

2,048 features for a single input image. But these features should
not be directly used for the classification task for the following
two reasons:

1. The dimension of the feature domain directly effects the
computational complexity of the training process. With
more features to take into account, more time is needed to
train the classifier.

2. Using the full size feature sets will lead to overfitting.
Considering the limited number of data points we have, a
smaller feature set can help improve the generalization per-
formance.

Thus, we use Principle Component Analysis (PCA) to re-
duce the feature space to 48 dimensions. We only use the first
48 features for training. Note that before conducting PCA, we
shuffle and split the data into training and testing sets, and PCA
model is fitted to the training set. Then, the same model is used
to transform the testing set.

The final step is classification. We use Support Vector Ma-
chine (SVM) as the classifier model, and Radial Basis Function
(RBF) as the feature space kernel. The confusion matrix of the
testing results is shown in Fig. The results here are promis-
ing: most of the prediction on the testing set is correct, especially
for Printer G, H and E all the predictions are correct. Theoret-
ically overfitting is avoided by using SVM classifier and PCA
dimension reduction. However, we are working on more data to
further test and validate the classifier.

Conclusion

In recent years, SOHO inkjet printers play an important role
in modern office productivity, but they are also being used as one
of the major counterfeiting tools around the world. In this pa-
per, we investigate the intrinsic signatures of currently popular
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SOHO inkjet printers, And we develop an identification system
to predict the deployed printer by examining a printed document.
We acquired 8 printer models from 4 major SOHO printer man-
ufacturers. By examining the dot patterns at a microscopic level,
we are able to design four intrinsic inkjet printer features that
can capture both dot features and spacing features: Dot Size,
Dot Density, Average Distance to Nearest Dot and Nearest Dot-
Sector Density Function. We find that the printers made by the
same manufacturers share more similarity than ones from other
manufacturers. Our features are also able to capture phenomena
like dot pairing. Finally, we use a Deep Neural Network to ex-
tract high dimensional intrinsic features from the collected prints,
and fit a Principle Component Analysis model to reduce the fea-
ture set to 48 features. A SVM-based classifier is trained on the
reduced feature set, and our testing results show the overall pre-
diction accuracy is higher than 95%, and for some printer models
the accuracy approaches 100%.
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