
 

Figure 1. Triangular (left) and square (right) Pyramid Sphere Packing 
structures. 
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Abstract 

A system for creating a rectangular-cuboid periodic matrix for 
rendering a variable density 3D print is described. This is important 
for applications where the interior of manufactured objects require 
less material or weight while still maintaining strength.  The matrix 
elements are grown from a line-based skeleton lattice using a “Line 
Dilation Algorithm”.   The method is computationally efficient 
allowing the design of large matrices to match the resolution and 
aspect ratio of the 3D printer. A voxel-based halftone model uses 
the resulting threshold arrays, allowing continuously varying 
densities.  While the method is quite general, the very strong 
tetrahedral-octahedral lattice is detailed; rendering this triangular 
structure is made possible by reducing it to a simple rectangular 
period. Also, rendering constraints preserve structural integrity for 
multiscale lattices by guaranteeing strut-to-strut connectivity. 

 

Background  
In manufacturing physical objects it is often desirable to reduce 

weight, or reduce the amount of material used.  Also, for some 
additive manufacturing processes reducing the fused material in the 
core of otherwise solid objects may be important for thermal 
management.  One way to do this is by using a halftone model in 
3D.  As with 2D halftoning, solutions to the 3D structural halftone 
problem generally fall into two categories: dispersed and clustered. 

 Much of the work using the dispersed halftoning approach for 
3D focused on the mixture of materials on a local region [1][2].    
Direct Binary Search (DBS) halftoning was used to mitigate coarse 
quantization of surfaces due to layering [3].   However while it can 
reduce density, the irregular nature of dispersed halftoning does not 
preserve strength.   

The parallel to 2D clustered-dot halftoning would be a 
connected lattice in 3D.  There is a rich background of work that use 
a vector-based, rather than a voxel-based, approach to build periodic 
microstructures.   “Intralattice” is software that fabricates lattice-
skin structures based on a method for generating lattice meshes [4].   
With the goal of minimizing weight, methods include designs based 
on isotropic unit cells [5], hollow-tube lattices [6], and an analytical 
model of unit lattices to compose larger structures [7].  To expand 
the range of material properties the geometry of the periodic lattice 
design can be made to evolve to minimize stress concentrations [8], 
or enhance the compressibility of graphene microlattices [9].  There 
is even work with aperiodic structures to achieve orthotropic elastic 
behavior [10] where a fine-scale foam-like structure is developed 
using a stochastic process with independent elasticity properties 
along the three orthogonal axis. 

Lattice-based structures defined by vector-based shapes are 
one approach but do not lend themselves easily to continuously 
varying densities.  To address the need for variable density and 
strength we propose a means for producing a 3D density threshold 
matrix by dilating a line-based skeleton specification, along with 
proposing a particularly strong skeleton structure.  A voxel-base 

halftone system can then efficiently render continuously varying 
densities to accommodate the target structural requirements.  

The Tetrahedral-Octahedral Lattice 
One of the strongest structural lattices is the one formed by the 

segments connecting the centers of optimally packed equi-sized 
spheres.  Spheres can be so packed in two ways as shown in Figure 
1.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
One is triangular pyramid sphere packing and is depicted in (a) 

as the pattern formed by packing spheres with a base that forms a 
triangle;  next to that is a model of the underlying lattice suggested 
by that arrangement. (The triangular packing method can also be 
described as hexagonal packing.) The other possibility is square 
pyramid sphere packing as shown in Figure 1(b).  Note that in both 
cases the line segments are all the same length.   

While these packing strategies may be described as different, it 
is important to point out that they are exactly the same in tessellating 
space.   They differ only by an angle of rotation  around an axis 
defined by any horizontal segment in either the triangular or square 
pyramids. Figure 2(a) shows a portion of the triangle pyramid with 
horizontal base ABC.  The blue lines represent equal segments of 
length one. The dotted black lines are perpendicular segments.  The 
angle DAE=  is the angular difference between a triangular 
pyramid and a square pyramid.  In Figure 2(b) the equilateral 
triangle ABC is shown with perpendicular bisectors.  
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The length of segment 

AE  = ½ / cos(30o) = 3/3. 

The angle then is  

 = cos-1( AE / AD ) = cos-1(3/3)  54.7o. 

In either case, triangular or square, the he structure is called a 
tetrahedral-octahedral lattice based on the shapes of the volumes 
outlined by the line segments.   A key step to building a single 
repeating matrix is to find a rectangular-cuboid period that will 
tessellate all of three-space with this lattice.  The solution is the line 
set shown in Figure 3.  The red lines indicate those lines that are part 
of neighboring periods. The period has a dimensional ratio x:y:z of 
1:1:2.   

Density Matrix Generation by Line Dilation 
Starting with a line-based skeleton such as the one described 

above, we build a rank matrix based on the distance each element is 
from this skeleton. We call the method the “Line Dilation 
Algorithm”.   

The size of the period is expressed relative the x dimension, as 
1:sy:sz.  For the tetrahedral-octahedral lattice example sy = 1, sz = 2 
 1.414.  The line-based skeleton is expressed as a list of lines 
defined by two end points inside a unit volume.    

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The size of the Density Matrix is specified by one variable, the 

size in X.  The other two dimensions are determined by the printer’s 
voxel aspect ratio, and period size sy and sz.  The voxel aspect ratio 
is a property of the target printer.  For example, if a printer has an x 
and y voxel pitch of 1234 samples per inch, and a z resolution of 
260 samples per inch, the voxels would be longer in the z direction 
by 1234/260 than they are in x or y.  The voxel aspect ratio is 
expressed relative to the size in x as vy and vz.  Continuing the 
example, vy = 1 and vz = 1234/260  4.746. Combining this data, the 
matrix dimensions are  

X, Y = Xsy/vy, and Z = Xsz/vz. 
 
Using these values, for a specified size of X = 300, the other 

dimensions after rounding would be Y = 300 and Z = 89.    
For each point in the matrix, such as that shown by a red dot in 

Figure 3, we first find the distance to each line in the skeleton. This 
is achieved with the help of Figure 4(a) where p1 and p2 are two 
points on one of the skeleton lines and p is the matrix element. For 
each element, or point p, we need to find the distance to each line in 
the line-based skeleton.   The general problem of finding the closest 
distance from a point to a line defined by two other points is 
illustrated in Figure 4(b).  We need to find the distance d from point 
p to the line defined by the two points p1 and p2 in three dimensional 
space.    

We define two vectors a and b: 
a = p1 - p2 
b = p - p2 

 
where the magnitudes are  

a = |a|, and b = |b|. 
 

The key is utilizing the geometric relationship involving the 
magnitude of the vector cross product: 

 
|a × b| = area defined by the parallelogram (yellow in the figure) 

   = da 
 

Figure 3. Line Skeleton of a Rectangular-cuboid Period. 
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Figure 2. Portion of a triangular pyramid lattice. 
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Thus, 

d = |a × b| / a 
 

Since a, a, and p2 are constants for the independent variable p, the 
operational equation is  

d = |a x (p - p2)| / a 
 
The distance to the closest line is recorded at each location, 

then those distances are sorted from smallest to largest producing a 
rank matrix.  The resulting density threshold matrix is then the rank 
matrix normalized by the range of values used to specify the input 
density.  Similar to growing dots in 2D clustered-dot halftone 
generation where dots are dilated as the input gray value increases, 
the density matrix dilates the skeleton lines as density increases. 

The use of a periodic rectangular-cuboid threshold array allows 
for a very efficient run-time rendering system.  The voxel vs. no-
voxel state for each addressable printed position is determined by a 
simple threshold operation against the input density value. In Figure 
5 the rendering system generated four bistate output objects for fixed 
density inputs with values as indicated. The size of the objects are 
exactly 2x2x2 periods to show the nature and periodicity of the 
dilated structures.  For the case of an input density of 99% the output 
is best visualized by the remaining empty space or holes colored red 
in the figure.  As an example of a variable density input object, 
consider a sphere with a 10% density in the center gradually 
increasing to 100%, or solid, density at the outer surface. A radial 
cross section of part of that input object is depicted with gray scale 
representing density in Figure 6.  One octant of the rendered bistate 
output is shown in Figure 7. 

In Figure 8 this matrix was used with a 3D printer to produce 
25% density prints with ½-inch and ¼-inch struts.  Figure 9 is 
another example cross-section print where in this case the input 
density varies from 15% in the center to 100%, or solid, at the outer 
shell.  In all cases, the bistate output of the density threshold 
operation can be thought of as a placeholder to be filled by any 
material or mixture of material; in figure 9 color is one of the 
variables.   
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Figure 4.  Finding the closest distance from a point to a line. 

Figure 5. 2x2x2 period output for different densities. 
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Figure 9. Print varying in density from 15% to 100%. 

Figure 8. 25% density with ½” and ¼” struts. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Multiscale Solution 
Variable Density lattices are useful for filling the interiors of 

3D printed objects for both reducing weight and thermal 
management during fabrication.  However one lattice size is not 
always appropriate for all interior volumes.  Smaller or more 
confined interior volumes are served better by smaller lattice 
structures and larger more open interior volumes by larger lattice 
structures.   For objects that have both tight and spacious interior 
spaces it would be useful to change lattice sizes in the same object.  
The problem is that the interface between lattice changes can be very 
weak.  An example of is shown in Figure 10(a) where a larger 
tetrahedral lattice transitions to a smaller cubic lattice.  Because the 
aspect ratios of the rectangular periods of the two structures are not 
the same it will generally be the case that struts from one lattice will 
not attach to struts from the other lattice.  In Figure 10(b) both the 
larger and smaller lattice are of the same type, and there is even an 
integer relationship between the scale of each lattice.  However the 
general case will be that the struts from one lattice will not connect 
to other, as shown.  In both of these examples the shell of the 3D 
print enveloping these interiors will carry the entire stress holding 
the object together.  Without a shell, these structures would fall apart 
and separate at the interface between lattices, negating any strength 
benefit afforded by using a lattice fill in the first place.   We seek a 
solution where a variable density fill structure can be multiscale and 
still maintain strength at the interfaces. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(a) 

(b) 

Figure 10. Typical interface failure. 

Figure 6  Radial cross section of density map of a sphere. 

Figure 7. One octant of the output object of a variable density sphere input. 
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This is achieved by forcing finer scaled versions of the lattices 
to line up with coarser versions.   Consider a two-dimensional slice 
of the solution as shown in Figure 11 where the extent of lattice 
periods are outlined.  (An actual shape of a lattice is not shown.)   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The density lattice is represented by an X by Y repeating period 

depicted by the dark lines in the figure.   The group of periods 
labeled Scale = 1 represent the largest scale where a single instance 
of the lattice fills each X by Y period.  The group of periods labeled 
Scale =2 each have exactly 2x2 smaller versions of the original 
structure.  Likewise the group labeled Scale =3 each have 4x4 
smaller versions of the original structure.   In this example larger 
lattices fill the more spacious area and smaller lattices fill the less 
spacious area.  Structural integrity is achieved by forcing scale 
changes to only occur at the border of the fundamental X by Y 
period, and by making smaller versions of the lattice with the same 
shape as larger versions. 

A visualization of the first three scales of the threshold matrices 
designed in this way is shown in Figure 12, depicting structures that 
could be rendered by those matrices.  All the matrices are the same 
size.  A key benefit of this strategy of allowing matrix change at 
fundamental period boundary is that struts from the larger scale will 
always connect with struts of a smaller scale.  Figure 13 illustrates 
the well connectedness between two scales using this strategy for 
the example of (a) a tetrahedral lattice, and (b) a cubic lattice.   
Photos of printed examples of this approach for both a tetrahedral 
and cubic density threshold matrices are illustrated in Figure 14 
using three different scale lattices. 

Variable density 3D objects printed using threshold matrices 
generated with the Line Dilation algorithm can replace solid fill 
volumes without compromise to structural integrity.  By identifying 
a rectangular-cuboid period that tessellates a volume with the 
tetrahedral-octahedral lattice, a simple matrix halftoning model can 
fill a volume with a strong fill using less mass.  Both density and 
scale can change to accommodate a wide range of 3D prints. 
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Figure 11. Assigning Lattice scales as a function of Spaciousness. 

Figure 12. Visualization of multiscale Threshold Matrices 
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(a) 
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Figure 13. The interface between matrices of two different scales.   
(a) Tetrahedral Matrices, (b) Cubic Matrices. 

Figure 14. Multiscale Density prints using tetrahedral (top) and cubic (bottom) 
matrices. 
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