
 

Embedding a Standard within a Standard using Mobile 
Progressive Barcodes 
Marie Vans1, Matthew Gaubatz2 and Steven Simske1 
HP, Inc., 1Fort Collins, CO, USA, 2Seattle, WA, USA 

 
Abstract 

Progressive barcodes have been proposed as a mechanism to 
employ Data Matrix barcodes on a package or label to enhance 
security services for products in a supply chain by layering 
additional data into color channels.  While the standards-based 
component of the code remains readable by the same equipment, the 
extra (color) layer requires additional processing to extract relevant 
information, communicate with appropriate database modules, etc.   
This paper examines the problem of extending the scope of 
applications addressable by this technique to a wider range of 
designs intended for mobile consumption.  This challenge involves 
developing a scheme that can be naturally used by a greater number 
of mobile devices, as well as increasing the ease of adoption.  The 
extension of progressive barcodes to the more ubiquitous QR code 
via embedding a compact Data Matrix code into the design is an 
approach for improving functionality of print and document 
workflows. The two barcodes can be used simultaneously for their 
most familiar purposes. Mobile processing allows us to leverage 
many more possible object-driven workflow touchpoints. 

I. Introduction 
Data Matrix barcodes embed dense information into small printed 
objects.  This barcoding scheme serves as an example on-ramp for 
a wide-range of object-based workflows.  One type of variant, 
designed to help secure an object throughout its lifecycle in a supply 
chain is based on progressive barcodes, by strategically layering 
additional information into the marking via color channels [1, 2].  
The progression of colors within the code supports an inference 
model, which, due to the structure of the allowable progressions, 
aids in efforts to mitigate illicit uses of the marked objects by, for 
instance, localizing points of diversion, providing additional layers 
of workflow directives, or simply increasing coded data capacity. 
 

Figure 1. The basic lifecycle of a color tile, where the colors White, Cyan, 
Magenta, Yellow, Blue, Green, Red and Black are shorthanded as W, C, M, Y, 
B, G, R and K, respectively. Note that the tile may be written to three times in 
its lifecycle, and contain one of 8 states (3 bits). 

Previously, progressions, as shown in Figure 1, were applied to 
modules in Data Matrix codes [3].  At the first stage, the W tiles can 
be overprinted with C, M or Y to create a C, M, or Y colored tiled, 
respectively. At the second stage, the C tile can be overprinted with 
M or Y to create a B or G tile, respectively; the M tile can be 
overprinted with C or Y to create a B or R tile, respectively; and the 
Y tile can be overprinted with C or M to create a G or R tile, 
respectively.  This paper examines the problem of extending the 
scope of applications addressable by this technique by incorporating 
these progressive structures into new barcoding schemes, i.e., QR 
Codes [4].  The solution should be compact, flexible, and 
straightforward to incorporate into existing object-driven 
workflows.  
Embedding standard barcodes into printed marks for object-based 
workflows was originally investigated for security purposes, using 
Data Matrix codes inside of color tile markings. Figure 2, taken from 
[5], shows an example. 
 

 
Figure 2. Pharmaceutical packaging featuring an embedded data matrix 
barcode inside the color tile mark. [5]  

The color tiles are organized around the two-dimensional data 
matrix code as shown in the label. The tiles are arranged on a 10x10 
grid, so that the deterrent can support 100 tiles. In the default 
configuration, there are 64 colored tiles containing red, blue green, 
cyan, magenta, yellow, or white. These deterrents were investigated 
towards increasing the payload density, i.e., the amount of data that 
can be carried within a small footprint. While color-tile-based 
scheme certainly carries a high capacity payload, it requires special 
tooling to leverage and use the layer of data represented by the color 
tiles anywhere in a workflow it is to be used. 

13Printing for Fabrication 2017



 

 

QR codes enable a wider range of touch points in an object-directed 
workflow, as these are easily interrogable by a plethora of devices.  
For a progressive barcode solution to be integrated into a QR code-
based workflow, a standards-compliant method of implementing a 
progression is required.  This topic is discussed in section II.  In 
addition, the technique must be easy to apply on a broad range of 
devices, and an easily deployable mobile solution to this problem is 
discussed in section III.  Results obtained using variations on the 
proposed approach are articulated in section IV. 

II. Data Matrix Inside QR Elements 
It is well known that QR codes can be rendered in exotic, even 
quixotic, ways while remaining readable [6, 7].  It is also known that 
finder pattern size correlates strongly with user experiences with 2D 
barcodes [8].  Thus, with respect to image processing concerns, a 
QR code is a strong candidate for implementing a progression to 
drive a workflow.  Figure 3 illustrates an instance of a progression 
using a Data Matrix code, and Figure 4 gives a similar example 
using a QR code.  While a “pure-QR” approach is a strong candidate 
solution, it is important to promote flexibility and ease-of-use.  A 
hybrid solution, i.e., one where a Data Matrix code is embedded 
within a QR code creates a marking applicable to a greater number 
of workflows, and yields the ability to do so with more numerous 
examples of existing hardware and software tooling. 
 

 
Figure 3. Example progression of codes in a “pure” Data Matrix framework. 

  
 
Figure 4. Example progression of codes in a QR code-compliant framework. 

An example of such a design (non-progressive) is illustrated in 
Figure 5.  One of the biggest challenges in extending progressions 
to this hybrid design is in creating augmentations that still enable 
both QR code and Data Matrix elements to be robustly readable; that 
is, the error-correcting code (ECC) of the enclosing barcode is not 
parasitically exhausted by the included barcode.  Both do have 
calibration marks, or finder patterns, and both can use forms of 
Reed-Solomon ECC.  But differences in the finder patterns lead to 
different degrees of signal detectability, which in turn effect 
decoding performance.  As a result, algorithms designed to read 
codes of one kind may not be tuned to achieve the same performance 
on codes of the other, under equivalent spatial (or error-correction) 
density, once progressions are implemented.  In other words, 
creating a set of progressions that have equivalent effects, or rather, 

are equally robustly interpreted when integrated into both standards, 
is not straightforward. 

 
Figure 5.  Example hybrid code:  a Data Matrix code contained within a QR 
code.  By scanning the design at different distances, both codes are readable 
with standard tools.   

Though barcoding systems modified to include a progressive layer 
need not use a set of progressions that are tuned in the same manner, 
since ease of adoption is a key goal, it is usually convenient if 
componentry used to interpret progressive layers can be reused. 
These criteria help to promote robust performance on as wide a set 
of reading devices as possible; the cost incurred for this advantage 
is a reduction in the capacity of the progressive layer.  Still, the 
presence of the QR finder patterns essentially removes the 
requirement that the embedded Data Matrix code elements be robust 
to the signal detection and orientation process.  In other words, the 
error correction applied to the Data Matrix code need only be 
enough to compensate for general imaging distortions, and the 
chroma changes implementing the progression.  Because Data 
Matrix codes are designed to be dense, there are many applications 
where this capacity constraint is not limiting. 
 
 

 

 

 

 

 

Figure 6.  Comparison of different hybrid QR/progressive Data Matrix codes; 
the progressive portion is the same in both examples.  Note that it is possible 
to represent nearly arbitrary graphical content within a QR code without 
significantly disrupting the quality of the payload [6]. Left side contains 3 
channels of information: 1-black & white QR code, 2-black & white Data 
Matrix, 3-color channel in the Data Matrix. Right side also contains 3 channels 
of information, however, in this case the color channel is associated with the 
QR code rather than the Data Matrix barcode. 

 Figure 6 illustrates different examples of hybrid progressive 
QR/Data Matrix codes.  Note that there is no real need for the 
modules in either code to be the same size, although there are visual 

14 © 2017 Society for Imaging Science and Technology



 

 

benefits to making that choice.  Furthermore, it is straightforward to 
process the central portion of the QR code as if it were, in fact, part 
of a Data Matrix code (see Figure 7; in essence, the decoder would 
need to synthesize the Data Matrix finder patterns).  Whereas this 
mechanism is somewhat inelegant, it reuses known rendering and 
progression routines that perform well with progressive Data Matrix 
codes.  It also improves the achievable capacity of the progressive 
layer simply because four additional rows and columns of modules 
(checkerboard edges plus to single-module quite zones) can have a 
pronounced effect on the amount of data that can be robustly 
embedded, especially in smaller designs. 

  
Figure 7.  Example QR-Data Matrix hybridization where quiet zones and finder 
patterns have been removed entirely. In this case, the static data associated 
with the black & white Data Matrix is also no longer readable by standard 
barcode readers, but would be if the quiet zones and finder patterns were 
superimposed over the QR code around the edges of the color region. 

III. Mobile Decoding Solution 
There are many barcode reading and analysis tools from which an 
implementation of a reader for a progressive QR code reader can be 
constructed. In fact, QR code reading is a native feature on several 
different platforms.  Nonetheless, the progressive layer requires 
strategic process of the color information associated with the 
barcode, and hence involves an image capture operation.  Thus, it is 
important to be able to access an image of a marking obtained when 
or after a QR code has been detected and decoded.  Furthermore, the 
solution should ideally be usable on as many platforms as possible.  
An obvious choice in that regard could be to rewrite and/or modify 
existing barcode readers to perform the required hybrid (composite) 
reading operation. 
A growing trend in mobile development is to expose more native 
capabilities via JavaScript APIs that allow web programs to 
implement highly functional applications with minimal overhead.  
Complementing this trend is a set of tools designed to help authoring 
such code, one of which is capable of translating C++ (Clang) 
compiled bitcode into a JavaScript library [9].  The basis for the 
proposed solution herein uses a barcode reading library [10] that was 
created from a C++ implementation of a well-used barcode library.  
The main appeal of this approach is straightforward:  no installation 
is required for use on a mobile device.  A caveat is that the APIs 
needed to enable video rate camera frame access are not 
implemented in every available mobile browser.  There is growing 
support for Android and PC devices in a variety of browsers [11], 
and this capable should be extended to mobile Apple products in an 
upcoming operating system release [12]. 
Because the solution is inherently web-based, it is straightforward 
to read a barcode, recover the finder pattern coordinates needed to 
infer the projective transform portion of the distortion induced by a 

capture process, and send a recovered image to a server/the cloud 
for further processing.  An alternate solution interprets the layering 
information directly in JavaScript on the device.  Whereas this 
approach is efficient, a server-based decoding system is more 
convenient for continuing and administering object-based 
workflows that connect the application to privileged information or 
other sensitive material regulated via role-based access control.  A 
system diagram for the proposed solution is given in Figure 8.  An 
additional advantage of such an approach is that if there is enough 
flexibility in controlling the payload for the QR portion of the 
design, it can be set up to include both a URL and variable data, as 
a query string, such that the utility itself used to interpret the 
progressive layer information is automatically associated with any 
object bearing the progressive marking. 
 

 
Figure 8.  Client-server system diagram for web-based progressive layer 
interpretation engine. 

IV. Results and Discussion 
The proposed approach was implemented using a combination of 
C# and JavaScript for rendering, capture and interpretation.  It was 
tested on an Intel-based PC, a Linux environment and several 
Android devices.  The focus was on testing of mobile platforms, but 
extensibility to different imaging form factors was considered as 
well.  In every example, the system was tested using Google’s 
Chrome browser.  It was found that the tested approach worked at 
several different resolutions, including 1920x1080; performance at 
this highest resolution was reasonably fluid.  A weakness of the 
proposed approach is that it does require an internet connection, but 
in many cases, the resources being controlled or accessed need to be 
accessed via the web anyway.  The barcode reading operation proper 
was not quite as robust as when implemented via compiled and 
installed native code, but this effect did not hinder the overall 
functionality; as cameras and processing power in mobile devices 
improve, this different will only decrease.  Figure 9 illustrates the 
web-based mobile decoding solution in action on a Samsung Galaxy 
S6.  The approach was also tested with older devices (including an 
S5 and an S4).  The top image reflects a progressive QR code as 
viewed through a traditional barcode reader, and the bottom image 

15Printing for Fabrication 2017



 

 

illustrates the process at the point where a code is detected, and an 
image is being sent to a server to process the progressive layer.   
 While the examples in Figure 6 are somewhat contrived, they 
illustrate the ability to embed different channels of information into 
a single mark. The left side of Figure 6 contains a standard QR code 
and a Data Matrix, each encoded with a different email address. The 
right side of Figure 6 again contains a text statement and an email 
address encoded in the standard black & white channels of each. The 
color channels in these examples, whether associated with the QR 
code or the Data Matrix barcode can be read with proprietary 
software accessible through applications available on various 
platforms such as desktop and mobile. To give an example of a 
workflow application, suppose the QR code encodes a URL to a 
website. Once at the website, the black and white channel of the 
Data Matrix contains a code for use within the website, for example, 
to unlock a coupon. The color channel can then be used to verify the 
authenticity of the coupon.  Another includes packaging:  a (possibly 
static) QR code with a product ID could be carried throughout a 
supply chain, while the progressions in the code reflect subsequent 
transactions throughout this ecosystem involving the product with 
that ID.  Inclusion of a Data Matrix code would enable the product 
to be scannable by a wider range of devices, i.e., consumer cameras 
and industrial scanning machines. 
 

 
 

  
 
Figure 9.  Example mobile decoding solution in action on a mobile phone 
(Samsung Galaxy S6).  The top image shows the default view within the 
decoder, which resembles many existing barcode readers.  When a QR code 
is detected and decoded, magenta dots appear on top of the detected finder 
patterns.  Then, based on their positions, the coordinates of the finder patterns 
are resolved such that the image can be rectified, and the marking is cropped 
and sent to a server for further processing of the progressive-layered (chroma) 
data.  Note that this same application can also be used on any computer if it is 
running Chrome or any browser supporting the appropriate APIs, and it is 
connected to a camera. 

References 
[1] S. J. Simske and A. M. Vans. Applications for Progressive 

Barcodes. J. Imagining Science and Technology. 2014, 58, 4, 
pp. 40404-1-40404-9. 

[2] A.M. Vans, S J. Simske, and B .Loucks. Progressive Barcodes, 
Proceedings of the Digital Fabrication and Digital Printing 
Conference, NIP28, Quebec City, Quebec, Canada, 2012. pp. 
368-370. 

[3] International Standard ISO/IEC 16022:2006(E), Second edition 
2006-09-15, “Information technology – Automatic 
identification and data capture techniques – Data Matrix bar 
code symbology specification,” 142 pp., 2006. 

[4] International Standard ISO/IEC 18004:2015, Third edition.  
“Information technology – Automatic identification and data 
capture techniques – QR Code bar code symbology 
specification,” 117 pp., 2015. 

[5] S.J. Simske. Meta-algorithmics: patterns for robust, low cost, 
high quality systems. John Wiley & Sons, 2013. Pp. 87. 

[6] K.-T. Lay, Y.-J. Chen, H.-C. Hsueh and S. G. Karungaru, 
“Visually comprehensible QR codes via embedding of big 
logos,” Proceedings of the IEEE International Conference on 
Signal and Image Processing (ICSIP), Aug. 2016, pp. 225-230. 

[7] G. J. Garateguy, G. R. Arce, D. L. Lau and O. P. Villarreal, 
“QR Images:  Optimized Image Embedding in QR Codes,” 
IEEE Transactions on Image Processing, vol.23, no. 7, 2014, 
pp. 2842-2853. 

[8] K. T. Tan and D. Chai, “A New Perspective on First Read Rate 
of 2D Barcodes in Mobile Applications,” Proceedings of the 
IEEE Conference on Wireless, Mobile and Ubiquitous 
Technologies in Education (WMUTE), April 2010, pp. 192-194. 

[9] A. Zakai, Emscripten:  An LLVM to JavaScript Compiler, 
https://github.com/kripken/emscripten, Dec. 23, 2016. 

[10] D. Schmich, HTML5 QR code scanner using your webcam, 
https://github.com/schmich/instascan, April 3, 2017. 

[11] MediaDevices.getUserMedia() – Web APIs | MDN, 
https://developer.mozilla.org/en-
US/docs/Web/API/MediaDevices/getUserMedia, August 28, 
2017. 

[12] Safari technology preview release notes | release 38, 
https://developer.apple.com/safari/technology-preview/release-
notes/. 

Author Biography 
Marie Vans is currently a Research Scientist with Hewlett-Packard Labs in 
Fort Collins, Colorado. Her main interests are security printing and 
document analytics. She has a Ph.D. in computer Science from Colorado 
State University. She also received a Masters of Library and Information 
Science the Department of Information from San José State University in 
2016, where she is focused on technologies for distance education.   

16 © 2017 Society for Imaging Science and Technology


