

Using IIO Structure to enable additional workflows
Margaret Sturgill, Steven J Simske, Marie Vans; HP Labs, Fort Collins, CO, USA

Abstract

Serialization is an important VDP (variable data printing)
application. Incremental Information Objects (IIOs) allow us to
keep track of steps in a workflow by modifying their serialized
information at each step. Usually the IIO progression is defined by
specific rules that change the visual properties of the IIO. We
herein propose an additional constraint that defines a specific
structure to the underlying bit string defining the IIO. We can then
use the structure to either identify the workflow stage without
access to the main ID database; modify the current workflow stage
due to additional factors (user authentication, location, etc.); or
use the information in the IIO as additional security information

Problem
Incremental Information Objects (IIOs), such as progressive

barcodes [1,2,3,7], provide us with a multicolored printed mark,
wherein the colors change at each stage in accordance to a specific
rule. In general, at each stage of the progression we can obtain the
binary string encoded, but the actual stage is not known without a
central database lookup to verify the IIO data. In many cases, the
access to such a database may not be available, so we were interested
to see if it is possible to impose additional constraints on the binary
representation of each IIO allowing us to infer additional
information about the stage of the IIO in the workflow. In this way,
the mark carries not only explicit data (actual data stored in the IIO)
but also implicit data (data based on the structure of the data in the
IIO). We wish to trigger a variety of workflows at each stage without
the knowledge of the meaning of the data stored in the IIO.

IIOs can come in two types, and we would like our solution to

be usable in both cases:

1. One-to-One stage correspondence where each stage transition
to a unique string with a specific number of set bits combined
with additional (end-user information, workflow menus,
expected set of options etc.) triggers a specific workflow. See
Figure 1. In this case we can randomly pick any transition that
will generate a new IIO that supports correct number of bits in
the next transition. The colors progress in White->CMY-
>RGB sequence

2. Many-to-One stage correspondence. Where a single IIO can
transition to multiple possible IIOS (item-container
relationship). The number of set bits combined with the user’s

authentication level can trigger workflows on child items even
when the end-user has no visibility to the container contents.
See. Figure 2. In Many-To-One IIOs, the visual progression
works opposite to One-to-One progression. It progresses in
RGB->CMY->White direction.

Proposed Solution
As our solution, we propose a structure at each stage of the IIO

that guarantees a specific number of 1-bits (with the remainder being
0 bits, of course) in the data string. For example, we might require
that for an IIO containing 128 bits of data, we impose a structure
such that:

Stage 0 (0 bits as binary “1”) -> Stage 1 (32 bits as binary “1”)

-> Stage 2 (64 bits as binary “1”) -> Stage 3 (96 bits as binary “1”)
-> Stage 4 (All 128 bits as binary “1”)

Usually we will ignore Stage 0 and Stage 5 as there is no

entropy in either one of the stages. This is due to the fact that at
Stage 0 there are no available bits (the IIO is potentially full) and at
Stage 4 all 128 bits are available thus not carrying any information
(blank IIO in Figure 2).

In above case, we can ascertain the current stage by counting

the number of bits available for transition in the IIO and then Figure 2. One-to-One IIO progression

Figure 1. One-to-Many Progression

1Printing for Fabrication 2017

inferring the progression stage from the result. Once the progression
stage is known, specific workflows can be triggered without the user
having access to the main database.

These workflows would be selected based on other information
available at the time such as user permissions, location or time of
the day.

Example of Application to Supply Chain:

The two different types of progression could be used for
different supply chain application.

Many-to-One transition in shipping applications:

For example, let us take an IIO for which each stage indicates

a level of parent-child relationship in a shipping application.
Additionally, we have two users with varying degrees of privileges
to open the packaging. The IIOs identifying the container have the
following structure imposed (number of 1 bits at each of the stages):

Shipping Container (128) -> Pallet (96) -> Box (64) -> Item (32)

We can then trigger different workflows based both on the
structure of the IIO and the permission level of the user scanning the
IIO:

Let us consider a role-based access control example. Here we
have 160 bits of writable string. As previously mentioned, due to
lack of entropy at 0 and 160 bits, we will only consider at most 128
bits of information. If User 1 (full privileges) scans a Box (64 set
bits in the IIO) the system might automatically record the fact that
deep inspection of the container is occurring. If User 2 (limited
privileges) scans the same Box, the system might trigger an
investigation as to why user 2 had access to the Shipping Container
contents. The system might not know what data is stored in the IIO,
but by knowing the stage and the user privilege level different
workflows can be triggered. Note that the privilege level can be
asserted in different ways. In some cases, the possession of the
reader might automatically grant very limited access privileges,
knowledge of login information like password a mid-level

privileges, while biometric information might be necessary to grant
full access privileges. The solution is safe from data mining and
other “temporal attacks” since a rules engine can dictate whether a
given progression stage is currently available. That is, a fraudulent
agent may try to “rewind” privileges from Stage 3 to Stage 2 if she
has less privileges at Stage 3 (revocation); however, the back-end
rules engine is aware that Stage 2 privileges are no longer available.

Table 1. Sample workflow triggers in a Many-to-One use case

Number of
bits in IIO

User 1
Full privileges

User 2
Limited privileges

128
Shipping
container

Record item location Record item
location

96
Pallet

Record cursory
inspection

Record item
location

64
Box

Flag possible problem Record item
location
Triger investigation

32
Individual
item

Record deep
inspection

Record item
location
Triger investigation

Example of One-To-One application in data retrieval:

A One-to-One progression IIO can be used to track an
individual workflow with the structure of the IIO changing at each
stage (of a 192-bit serialization field):

Stage1 (160 bits) -> Stage 2 (128 bits) -> Stage 3 (96 bits) -> Stage
4 (64 bits)->Stage 5(32 bits)

Let us have three Users with different permission levels. At
each stage, each of the Users have a different permission to access
the data. For example, let us examine a data retrieval request where
the system can automatically limit an access to data even when each
of the users that can see that the request has been notified of the
requests existence. User 1 can create request, User 2 can route that
request to the correct recipient and create a resolution, and User 3
can process the data.

By examining the structure of the IIO combined with the nature

of the user credential permission, the system does not need to know
anything about the content of the data or even access the data
repository. This limits the possibility of the data being accessed by
unauthorized parties

Table 2. Data permission in One-ot-One data routing case.

Number
of bits in
IIO

User 1 User 2 User 3

160 Enter request Has no access
to request
content or data.

Has no access
to request
content or data. Figure 3. Application of IIO to a transportation use case.

2 © 2017 Society for Imaging Science and Technology

128 View initial
request

Can update the
request and
route to User 3.
No access to
data

Has no access
to request
content or data.

96 View initial
request

View updated
request

Access the
request and
data and route
back to User 3

64 View initial
request

Receive data
from User 3
trigger
additional
workflow to
process the
return data.
Create
resolution

Has no access
to request
content or data.

32 View initial
request and
resolution

Has no access
to request data
or resolution.

Has no access
to request data
or resolution.

Example of Application to Security Printing:

The above examples use the structure of the IIO to trigger

specific workflows without accessing the data associated with the
unique ID stored in the IIO. While usually the IIO data at each stage
carries an identifier data, we could instead assume that some of the
stages carry some kind of security data. If, for example, a payload
string s will be decrypted via an XOR operation (signified by the
symbol ⊕) with a known nonce (one-time use random string) n, we
may want to make sure that the decryption will occur only once a
certain stage (with data string a) has been reached (or later) in the
progression. Then, we can require that the decryption is performed
by: a⊕n⊕s. Note that if s availability stage is reached before the
nonce is available, we can pre-process string s by calculating a⊕s.
Again the structure of the IIO data would indicate the stage and thus
the specific strings a, n and s needed for decryption. The approach
allows the set of approvals (each of which performs an XOR
operation on the encrypted string) to be performed in any order. See
Tables 3 and 4.

Note that in this example the security data must be the same
length at each stage. Thus, the amount of data that can be carried at
any stage is limited by IIO carrying the least information.

Let us consider a progression example where 3 of the

progression stages indicate:

Stage A – Decryption Authorization Stage carrying an activator
Stage N – Decryptor Stage carrying the nonce
Stage S – Data Stage carrying the encrypted data string

The IIOs encoding these stages may be encountered in any

order, but all three have to be read before the decryption can be
performed. This is enforced by the fact that the data in all three IIOs
has to be combined to perform the decryption.

Table 3 shows what happens when the progression stages are

read in the Stage A-> Stage N -> Stage S order. That is the

authorization is obtained before the data is available. In this
situation, the nonce can be pre-processed with the authorization a⊕n
generating a new intermediate string d. When Stage S is reached the
decryption can be finished by performing d⊕s

Table 4 shows the case when the nonce n and security data s

are available before the decryption authorization is obtained. In this
case we can process string s with the nonce n to obtain the string d.
Once the authorization stage is reached, the decryption can be
finalized by combining the string d with the authorization

Even though the XOR operations were performed in different
order, the final result is the same in both examples.

Table 3. Decryption authorization stage a is available before the
data s is available. Nonce n can be authorized before the data is
available, and a⊕n⊕s is the orders of XOR operations.

 Binary string
a – activator from IIO 1 0 1 0 1 1 0 1 0
n – nonce 0 1 1 0 1 1 0 0 1
s – data code 0 0 1 0 0 1 0 1 1
d = a⊕n 1 1 0 0 0 0 0 1 1
d⊕s 1 1 1 0 0 1 0 0 0

Table 4. Nonce n and string s are available before we reach the
decryption authorization stage a. In this case n⊕s⊕a can be
processed at decryption authorization stage.

 Binary string
a – activator from IIO 1 0 1 0 1 1 0 1 0
n – nonce 0 1 1 0 1 1 0 0 1
s – data code 0 0 1 0 0 1 0 1 1
d = n⊕s 0 1 0 0 1 0 0 1 0
d⊕a 1 1 1 0 0 1 0 0 0

As mentioned before, because each stage IIO carries a different

length data string, it is necessary to pad the payload string to the
appropriate length. Even though we can use random strings to fill in
the additional information, care should be taken to prevent “entropy
snooping” and allow a possible reverse engineering approval, order,
or the workflow in general. In the case of the example above, note
that the Hamming Distance [8] (number of bits that vary between
the two strings) is the same between a and s strings and n and s
strings (hamming distance of 3); thus, it is harder to reverse-
engineer which stage carry the authorization vs. the nonce.

Conclusions
While IIOs allow us to encode explicit data that changes over

time, we can also provide a secondary channel of information that is
stage-specific. Rather than the actual data stored in the IIO, it is its
structure that triggers the workflow. By separating the two channels,
we liberate the processing system from the necessity of looking up
the meaning of the IIO content, thereby minimizing the level of
privileges needed to process IIO data.

References
[1] S J. Simske, A.M. Vans and B. Loucks. 2012. Incremental

Information Objects and Progressive Barcodes, in Proceedings of the

3Printing for Fabrication 2017

Digital Fabrication and Digital Printing Conference, NIP28, Quebec
City, Quebec, Canada, pp. 375-377.

[2] Simske SJ, Vans, M. Archive-enabling Tagging using Progressive
Barcodes. In Proceedings of the Archiving’15 Conference, May 19-
22, 2015, Los Angeles, pp. 130-135.

[3] Simske S, Vans M, Pollard S, Adams G, “Forensic Markings for
Progressive Barcodes.” TAGA 67th Annual Technical Conference,
March 23, 2015, Albuquerque.

[4] Simske SJ, Vans M, “Applications for Progressive Barcodes”, Journal
of Imaging Science and Technology (July 2014), 58(4), Article no.
40404 (9 pp.). DOI: 10.2352/J.ImagingSci.Technol.2014.58.4.040404

[5] Simske SJ, Vans M, Loucks B, “Incremental Information Objects and
Progressive Barcodes,” Journal of Imaging Science and Technology
(May 2013), 57(3), Article no. 030405. DOI:
10.2352/J.ImagingSci.Technol.2013.57.3.03040

[6] A.M. Vans, S J. Simske, and B .Loucks. 2012. “Progressive
Barcodes”, in Proceedings of the Digital Fabrication and Digital

Printing Conference, NIP28, Quebec City, Quebec, Canada, pp. 368-
370.

[7] Vans, Marie, Steven Simske, and Brad Loucks. "Progressive Barcode
Applications." NIP & Digital Fabrication Conference. Vol. 2013. No.
1. Society for Imaging Science and Technology, 2013.

[8] Hamming, R. W. Error detecting and error correcting codes. Bell
System Tech. J. 29, (1950). 147–160.

Author Biography
Margaret Sturgill currently works at HP Labs in Fort Collins, Colorado in
the HP Labs Print Adjacencies & 3D Lab. Her main interests include
Document Security, Document Workflows, Supply Chain Analysis and Anti-
counterfeiting. She holds a BS in Computer Science and Mathematics from
University of Kentucky and a Ph.D. in Computer Science from University
of Utah. She has previously worked at HP on scanner image processing
software and at Ataman Software Inc as the Chief Operating Officer. She
has 25 US Patents.

4 © 2017 Society for Imaging Science and Technology

