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Abstract 

Tougher and stronger carbon fibre reinforced composites 
have been prepared using inkjet printing to deposit discrete 
polymer droplets onto the composite precursor. The polymer 
system that has been inkjet printed is a dual material system, in 
which half of the deposited droplets contain PMMA and the 
other half contain PEG. 

The resultant uni-directional carbon fibre reinforced 
composite exhibits improved mechanical properties with a 
barely noticeable increase in weight. For the dual material 
PMMA & PEG system, mode I interlaminar fracture toughness 
is increased by 40%, with evidence that higher values are 
possible. Additionally, initial experiments indicate that a 
significant increase (~5%) in apparent interlaminar shear 
strength is also observed. 

Introduction 
Carbon fibre composites 

Carbon fibre composite materials are increasingly 
employed in aerospace applications (e.g. Boeing’s 787 
Dreamliner) on account of their high specific stiffness and 
strength, as well as their low weight. It has been calculated that 
for every kilogram reduction in weight in an aircraft there is a 
corresponding reduction of 200 litres in annual fuel consumption 
[1]. 

Although there are clear financial and environmental 
benefits to using lightweight composites, some of their inherent 
properties such as low fracture toughness and brittleness 
compared to metallic alloys can lead to time consuming 
maintenance protocols.  
The most common mode of failure in carbon fibre composites is 
by delamination, whereby cracks grow along the interface region 
between adjacent plies [2][3]. The brittle nature of epoxy means 
that it is prone to develop microcracks when subjected to stress. 
These microcracks tend to develop between laminate plies due 
to the laminated materials lacking reinforcement in the through 
thickness direction [4]. This phenomenon, of the cracks 
propagating between the plies, eventually leads to delamination, 
which is a typical failure mode commonly seen in laminated 
carbon fibre composites.  

A variety of methods have been investigated to inhibit and 
prevent delamination occurring in carbon fibre composites with 
interleaving being shown to be effective [5]. Interleaving 
involves placing thin sheets of high toughness material between 
laminate plies [6]. However, a major trade off exists in 
employing the interleaving toughening method as the overall 
weight of the composites system increases, which compromises 
the high stiffness-weight and strength-weight ratios of carbon 
fibre composites. Furthermore, there is a reduction in the 
interlaminar shear properties and fibre volume fraction [6]. It is, 
therefore, of interests to the composites community to 
investigate alternative means to improving the toughness of 
carbon fibre composites without significantly increasing the 
overall weight of the system. 
 
 
 
 
 

Inkjet printing 
 Drop-on-demand inkjet printing is an attractive technique 
which can generate uniform droplets in the picolitre volume 
range and precisely dispense those droplets directly into pre-
designed patterns without masks [7][8]. Two of the major 
advantages of using inkjet printing are the ease of pattern 
change-over since patterns are digitally stored and an efficient 
material usage as droplets are printed only at places where 
needed. Inkjet printing has been used in a variety of applications 
such as fabricating scaffolds for tissue engineering [9], printing 
electronics [10] and delivery of biological factors [11][12]. 
 
Inkjet printing and carbon fibre reinforced 
composites 

Recently, it has been reported that inkjet printing has been 
used to toughen carbon fibre composites [13][14], and to 
introduce an organic system which possesses self-healing 
capability into carbon fibre composite [15]. As regards the 
toughening approach, a solution of poly(methyl methacrylate) 
(PMMA) was inkjet printed onto the carbon fibre precursor, 
known as pre-preg. The PMMA droplets were patterned in a 
hexagonal pattern, as shown in Fig. 1. After printing was 
complete, the sheets of pre-preg were laid up and thermally 
processed under pressure to form the final carbon fibre 
composite material. 
 

 
Figure 1. The standard printing pattern that has been employed in 
producing toughened carbon fibre composites by inkjet printing. Each dot 
corresponds to a printed droplet of PMMA, where the dot-spacing in X (dx) 
was 0.4 mm and dot-spacing in Y (dy) was 0.2 mm. 
 

The resultant uni-directional carbon fibre reinforced 
composites that have been prepared employing an inkjet printing 
step exhibit improved mechanical properties with a barely 
noticeable increase in weight (e.g. if using 10 wt% PMMA 
solution and a hexagonal discrete dot pattern, dx = 0.4 mm, dy = 
0.2 mm, for printing, approximately 0.036 wt% increase in the 
final composites). As can be seen in Fig. 2, for a single material 
PMMA system, mode I interlaminar fracture toughness (GIc) 
increased by 40%; compare the non-printed (NP) control to the 
printed ‘Hexagon’ sample [16]. Higher values are possible, as 
can be seen in the printed ‘Film’ sample in Fig. 2 [16].  
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Figure 2. A comparison of mode I interlaminar fracture toughness 
measurements, GIc for a non-printed control (NP) and two experiments 
containing inkjet printed PMMA. One of the experiments contained a printed 
hexagonal pattern of PMMA dots whilst the other contained a continuous 
film of PMMA. The HEXAGON sample exhibits higher GIc when compared 
to the control, NP and greater reproducibility when compared to the FILM 
sample [17]. 
 

The left hand side of Fig. 3 shows the crack initiation and 
propagation for the three sample types. It can be seen that the 
both printed systems exhibit improved toughness, with film 
showing higher values but the printed hexagon displaying higher 
repeatability. The right hand side of Fig. 3 illustrates the 
apparent interlaminar shear strength (aILSS) of the three 
samples. It can be seen that whilst the printed hexagon sample is 
comparable to the control the printed film sample is lower on 
average and exhibits a wide variability. 
 

 
 
Figure 3. Crack initiation and propagation in the left hand figure and the 
apparent Interlaminar Shear Strength (aILSS) on the right for the control 
(NP), the printed hexagon and printed film samples.  In all cases n = 5. [17] 
 

In the work discussed in this paper, the effect of printing a 
polyethylene glycol (PEG) solution and a dual material system 
in which half of the dots are PMMA and the other half are PEG 
is discussed. 

Results and Discussion 
Variation of PEG concentration and solvent 

PEG can be dissolved in both organic and inorganic 
solvents and although the solvent should not affect the 
mechanical properties of the composites since it should fully 
evaporate before lay-up, it is worth investigating to ensure this is 
the case. In order to minimise the potential effect of solvent 
evaporation rate on the possible amount of residue trapped in 
PEG deposits, solvents with similar boiling point (Deionised 
water, Dw, 100°C; 1-Propanol, Pp, 97°C) were used. 

As expected, changing the solvent used for the PEG 
contained solutions does not have much influence on aILSS of 
the printed samples compared to non-printed group (NP) as 
shown in Fig. 4, which indicates that the solvent evaporates from 
the substrate before layup, presumably because the volume of an 
inkjet printed droplet is sufficient small. 

It is also can be seen from Fig. 4 that varying the 
concentration of PEG in the solutions has little difference on the 
aILSS of the printed samples, when compared to the control 
(NP). However, it is also worth noting that the aILSS of PEG 
printed CFRP laminates was retained compared to the control. 

A comparison between 5 wt% solutions of PMMA and 
PEG and their effect on mode I interlaminar fracture toughness, 
GIc, is shown in Fig. 5. It can be seen that the PMMA addition 
has a marked effect, whereas the PEG addition has less of an 

effect, with much of its improvement being within the scatter of 
the non-printed control. As PMMA showed a better toughening 
efficiency, the majority of subsequent work focussed on the 
PMMA system, which has been reported elsewhere 
[13][14][17]. It is pertinent to report the data here as it helps 
inform the discussion with the dual material system. 

 

 
Figure 4. aILSS comparisons of samples printed using different PEG 
concentrations and solvents, where Dw stands for deionised water and Pp 
is 1-Propanol. The pattern employed was the hexagon shown in Fig. 1. n = 
5 for all cases. 
 

 
Figure 5. GIc comparisons (initiation and propagation) for 5 wt% solutions 
of PEG in water, PEG in 1-propanol and PMMA in DMF compared to a non-
printed control (NP) (n = 5). 

 
Dual material (PMMA & PEG) system 
       The motivation for the dual material experiment was to 
explore one of the advantages of inkjet printing, namely the 
ability to deposit more than one material [18]. In this particular 
case, 10 wt% PMMA and 10 wt% PEG solutions was used to 
alternatively print deposits patterned in a hexagon pattern as 
shown in Fig. 6. The resultant composite samples were tested for 
both mode I interlaminar fracture toughness, GIc and apparent 
interlaminar shear strength, aILSS, with the measurements 
shown in Fig. 7. 

It can be seen from Fig. 7 that the dual material system 
delivers an improvement in GIc that is similar to that for the 10 
wt% PMMA. This is a remarkable result since previous 
experiments have shown that increasing the dot spacing of the 
PMMA system or reducing the concentration of PMMA reduces 
the improvement in GIc. Similarly, earlier research had shown 
that PEG had little effect on GIc (Fig. 5). 

When the values for aILSS are observed, the right-hand 
side of Fig 7, it can be seen that the dual material system 
exhibits a significant increase (in this case significant implies 
that the result is outside the variation of the control) compared to 
the PMMA system and the control. Although this work is still at 
an early stage, it seems that the combination of PMMA and PEG 
has a beneficial effect on the mechanical performance of carbon 
fibre reinforced composites, both in terms of mode I interlaminar 
fracture toughness and apparent interlaminar shear strength but 
the exact reasons for why this is have yet to be determined. At 
this stage, it is, however, reasonable to suggest that inkjet 
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printing’s ability to print more than one material in a single pass 
confers an advantage of carbon fibre reinforced composites. 
Moreover, it is fascinating to observe that usually one would 
expect a decrease in aILSS for a toughened system (Fig. 3, right-
hand side) but it seems that the discrete dots produced by inkjet 
printing prevent this drawback. 
 
 

 

Figure 6. Alternatively printed hexagon pattern (dx/dy = 0.4/0.2 mm) using 
PMMA and PEG solutions.  

 
Figure 7. The values of GIc and aILSS measured for three sample sets. 
One of the sample sets was the non-printed (NP) control, the second was 
the optimised PMMA single material system, and the third was a dual 
material PMMA/PEG system. [17] 

Conclusions 
Inkjet printing has been used to deposit droplets of solution 

that either contain PEG (polyethylene glycol) or PMMA 
(poly(methyl methacrylate)) onto a carbon fibre composite 
precursor, pre-preg. After the final composite has been obtained 
the resultant uni-directional carbon fibre reinforced composite 
exhibits improved mechanical properties with a barely 
noticeable increase in weight. For the dual material PMMA & 
PEG system, mode I interlaminar fracture toughness is increased 
by 40%, which is similar to that obtained for the PMMA single 
material system, and a noticeable increase in apparent 
interlaminar shear strength is also observed. 

Materials and Methods 
Solution preparation and inkjet printing  

PMMA (Mw ~ 15 kDa) and PEG (Mn ~ 20 kDa) were 
dissolved in N, N-dimethylformamide (DMF) and deionised 
water and 1-Propanol with different weight percentage 
respectively to form the solutions for printing. All chemicals 
were purchased from Sigma Aldrich (Sigma-Aldrich Co. Ltd., 
UK) and used as received. Ultrasonic agitation was used to aid 
the dissolution of PMMA in DMF. A drop-on-demand (DOD) 
JetLab 4xl printer equipped with a compatible MicroJet 
printhead was employed as the deposition tool (MicroFab Inc. 
Plano, USA). 
 
Test procedures 

A tensometer (TA500 Texture Analyser, Lloyd 
Instruments, UK) equipped with a 500N load cell was used to 
conduct the DCB (double cantilever beam) test in tension mode. 
The speed of crosshead was 5 mm/min. The test samples were 
first pre-cracked using a mode I opening load to avoid any resin 
rich pockets and generate a sharp crack tip for subsequent test. A 

high definition camcorder was used to record the DCB test for 
determining the delamination length for data reduction.  

The short beam shear (SBS) test was carried out using a 
benchtop tester (H25KS, Tinius Olsen Ltd., UK) equipped with 
a 25KN load cell in three-point compression mode. The speed of 
crosshead was 1 mm/min. The span/thickness ratio was 5 which 
is recommended by the test standard. 
 
Sample fabrication 

Unidirectional CFRP prepreg tape (CYCOM®977-2, Cytec 
Industries Inc., USA) was used to fabricate the carbon fibre 
laminates. Twelve (DCB) and eight (SBS) printed plies of 
prepreg were laid-up unidirectionally for subsequent curing into 
laminates respectively. A non-stick polytetrafluoroethylene 
(PTFE) film was inserted at the mid-thickness ply of DCB panel 
to simulate a crack to allow the crack propagation at the 
interested interface. A customised autoclave (Premier 
Autoclaves Ltd., UK) was used to consolidate the laid-up panels. 
For the detailed curing cycles please refer to previous work [14]. 
DCB and SBS samples were cut into 140 ± 1 mm × 20 ± 0.5 mm 
× 3 ± 0.1 mm and 20 ± 1 mm × 10 ± 0.2 mm × 2 ± 0.2 mm in 
accordance with the test standards [19][20]. Two 11.9 mm x 
11.9 mm centre-drilled metal blocks were bonded to each PTFE 
inserted DCB samples ends for fitting into the test machine. For 
improving the visibility of the crack propagation, the edges of 
DCB test samples were paint with a white correction fluid. 
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