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Abstract 
The controlled deposition of polyelectrolyte macroinitiators 

for polymer brush growth is investigated. High resolution 
patterns are created for periodic array gratings towards 
responsive polymer brush sensors. Further, controlling the 
segregation of the macroinitiator to the droplet edge by careful 
manipulation of the constituent solutes leads to sub-micron 
patterning of polymer brushes. 

Introduction 
Thin films formed of polymer chains densely end-grafted to 

a surface are known as polymer brushes[1]. The excellent 
solvent-resistance conferred by grafting, the vast range of 
applicable polymers, including stimulus-responsive and 
multiblock, along with fundamental differences in physical 
properties compared to free polymers due to the steric 
constraint, has led to emerging applications in diverse fields 
such as biomedicine, microelectronics, photovoltaics and 
sensing[2]–[8]. High resolution patterning of polymer brushes is 
further expanding their utility, for example in biomedical 
applications; the manipulating of cell culture 
microenvironments, patterning cell growth and sensors based on 
photonic effects[9]–[12].  

Brushes can be created by direct attachment of a preformed 
polymer to a surface, known as grafting-to. Aternatively, an 
initiator monolayer is first deposited on the surface from which a 
polymerization can be initiated, growing the polymer directly. 
This technique is known as grafting-from and often offers more 
flexibility than the grafting-to process. 

A range of high resolution techniques has been considered 
for polymer brush patterning. For example, microcontact 
printing (μCP), in which a topographically patterned rubber 
stamp is ‘inked’ with an initiator monolayer-forming reagent 
and applied to the surface, allows for rapid and complex brush 
patterning. However, the initial stamp fabrication can be costly 
and is not compatible with rapid pattern iteration[13], [14]. 
Further, the generation of sub-micron features by this technique 
requires even more specialized procedures. Equally, direct 
photolithographic monolayer patterning, such as the destruction 
or activation of a pre-formed monolayer, by exposing directly 
through a mask or via photoresist processes, suffers from the 
same barrier to rapid pattern iteration of lengthy mask 
fabrication[15]–[17]. Techniques are available which can 
generate monolayer patterns on-the-fly such as dip-pen 
nanolithography and e-beam lithography but are typically used 
for the production of extremely high resolution patterns, require 
long processing times and cover only small areas[18], [19]. To 
the best of our knowledge there is currently no universal 
technique capable for the rapid iteration of high resolution 
polymer brush initiator patterns. 

In contrast, direct additive printing is fast becoming a tool 
for high throughput tool for materials patterning. It possesses a 

number of potential benefits, including good material usage 
efficiency, the avoidance of expensive process steps such as 
photo-lithography, etching and vacuum deposition, and the 
ability to rapidly change designs in real time in a highly cost 
effective fashion.  Here we focus on the use of inkjet because of 
its ability to accurately dispense variable volumes of material 
per drop, 0.5 fL – 100 pL, with high resolution. Feature sizes 
currently down to 15 m are achievable for piezo drop on 
demand and ca. 1 m utilizing an electrohydrodynamic based 
firing mechanism, all in the absence of complimentary small 

feature patterning strategies. 
The patterning of initiator monolayers by inkjet is a 

technological challenge and as such there are only a few 
examples in the literature. Sankhe et al[20] used drop-on-
demand printing of self-assembled monolayers (SAMs) with 
thiol-terminated ATRP initiators to produce millimeter-scale 
patterns on gold using a consumer inkjet printer. Although this 
is an easily-accessible process, due to both the inherently large 
drop-size and monolayer spreading after jetting, using consumer 
technology such as this is unlikely to be applicable to 
micropatterning. Emmerling et al[21] also produced large scale 
brush patterns (> 50 µm feature size) using inkjet printing with a 
drop-on-demand microarray system. In this instance a pre-
formed homogeneous monolayer was patterned by jetting 
sulphuric acid causing the acid-sensitive initiator to be destroyed 
in the printed regions. This approach required extended acid 
contact times and careful control of conditions to properly 
destroy the initiator, but does allow tunable grafting density. 
Finally, polymer brushes have been formed directly by jetting 

Figure 1. Schematic of the printing a polymerization process of 

creating macroinitiator patterns and growing pHEMA polymer 

brushes by SI-ARGET-ATRP. 
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reactive end-functional polymers from an electrohydrodynamic 
printer on silica substrates at sub-micrometer resolution, which 
were then used to control block copolymer phase separation[22]. 

However, it is extremely difficult to access high grafting 
densities and thick brush layers with such grafting-to strategies, 
hence a grafting-from procedure (i.e. polymerisation from 
immobilised initiators) was chosen for our work.   

Herein we create polyelectrolyte macroinitiator (MI) based 
inks to functionalize a surface. Polymer brushes are grown from 
this MI monolayer using a surface initiated atom transfer radical 
polymerization with activator regenerated by electron transfer 
(SI-ARGET-ATRP) in a grafting-from procedure (Figure 1). 

Using functional polyelectrolytes for surface 
functionalization has several benefits: being large molecules, 
spreading on the surface by diffusion (as observed with small-
molecule thiols) is negligible, allowing excellent pattern 
fidelity[20]. Polyelectrolyte deposition can be generalized to any 
charged surface, avoiding surface-specific and reactive chemical 
groups[23] and, unlike silane and thiol self-assembled 
monolayers, polyelectrolytes can be processed from water. 
Furthermore, these polymers can be synthesized on a large scale, 
the grafting density (number of initiator sites per unit area) can 
be tuned through varying monomer ratios and further 
functionality can be introduced through copolymerization. 

We go on to explore how control over the precipitation of 
the cationic polyelectrolyte MI during the print drying process 
the can be further harnessed for ultra-fine patterning whereby 
feature size is in part decoupled from the limitations of the 
droplet size. These patterns are then amplified by SI-ARGET-
ATRP of polymer brushes, producing robust surface-grafted 
topographic patterns of sub-micron size. Further, we believe that 
this has the potential to be applied to many other polyelectrolyte 
based systems. 
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