hitps: //d0| org/10.2352/ISSN.2169-4451.2017.32.472
©2016; Sociely for Imaging Science and Technology

Fully Solution Processed Organic Light-emitting
Electrochemical Cells (OLEC) with ZnO Interlayer for Lab-

on-Chip Applications

Z. Shu,"” E. Beckert,? R. Eberhardt,® A. Tiinnermann™*’; 'Institute of Applied Physics, Abbe Center of Photonics, Friedrich
Schiller University Jena, Max-Wien-Platz 1, D-07743 Jena, Germany; 2 Fraunhofer Institute for Applied Optics and Precision
Engineering IOF, Department of Precision Engineering, Albert-Einstein-Str. 7, D-07745 Jena, Germany

Abstract

Microfluidic lab-on-a-chip devices can be used for
chemical and biological analyses such as DNA tests or
environmental monitoring. In order to make a monolithic and
cost-efficient/disposable sensing device, direct integration of
excitation light source for fluorescent sensing is often required.
A manufacturing process for fully solution-processed blue
organic light-emitting electrochemical cells (OLECs) is
presented, which consist of pre-patterned ITO, spin-coated ZnO
buffer layer and blue light-emitting polymer plus dopants and an
inkjet-printed PEDOT:PSS transparent top anode. Furthermore,
the fully transparent blue OLEC is able to emit > 2000 cd/m’
light under pulsed driving mode, which fulfils requirements for
simple fluorescent on-chip sensing applications. Furthermore,
ITO electrodes can be replace by PEDOT:PSS transparent
electrodes when a ZnO interlayer is solution processed on top,
which enable the mask-free and fully solution processing
integration on chips.

Introduction

Thanks to significant demands for low-cost and disposable
biological/medical sensing devices, tremendous efforts have
been made to develop microfluidic lab-on-chip systems for point
of care applications!l. Microfluidic chips are miniaturized
microanalysis labs fabricated on compact chip substrates, in
which small fluid volumes can be controlled, mixed, and
analyzed. In order to realize most of the basic functionalities
required for the analysis on a microfluidic chip without external
components, functional units such as valves, pumps, heaters,
fluorescent light sources, and detectors are required®. Although
fluorescent sensing is the most common analytical and
diagnostic method in biological and medical applications, very
few examples of fully integrated compact and low cost
fluorescence sensing systems on microfluidic chips can be
found™. This is mainly because widely used sensing units are
based on lasers, LEDs, and silicon photodiodes that are normally
integrated in a hybrid way by bonding. Organic light emitting
diodes (OLEDs) have the advantages of self-emitting properties,
high luminous efficiency, full-color capability, wide viewing
angle, high contrast, low power consumption, low weight and
flexibility. All these make OLEDs a suitable light source for
microfluidic devices™. However, a low work function cathode
and/or electron injection layers like Ba, LiF are indispensable
for high brightness OLEDs, which require vacuum deposition
and an inert fabrication atmospherel™. It is known that deep blue
light (~480nm) is widely used as the excitation light for
medical fluorescent sensing applications. However, OLEDs in
blue color normally show low efficiency due to high energy gap.

Hereby we introduce a fully solution processable deviation
of OLEDs, organic light-emitting electrochemical cells (OLECs)
as a low-cost excitation light source for a disposable
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microfluidic sensing platform. By mixing metal ions and a solid
electrolyte with light-emitting polymers as active materials, an
in-situ doping and in-situ PN-junction can be generated within a
three layer sandwich device. Thanks to this doping effect, work
function adaption is not necessary and air-stable electrode such
as PEDOT:PSS and silver can be used™®. Consequently, the in-
situ generated PN-junction enable the relatively thick active
layer (up to 1000 nm rather than ~ 80 nm for OLEDs), which is
in favor of solution-processing such as spin-coating and inkjet
printing. An ambient manufacturing process for fully solution-
processed blue OLECs is presented.

Experimental

Material: Blue and yellow light-emitting polymer were
purchase from Merck KGaA. Solid electrolyte dicyclohexano-
18-crown-6 (DCH18C6), Poly(ethylene oxide) (PEO), salt
Lithium trifluoromethanesulfonate (LiCF;SOj;), Potassium
trifluoromethanesulfonate (KCF;SOs3) and ZnO precursor Zinc
acetylacetonate hydrate (Zn(acac),) were purchased from
Sigma-Aldrich. To prepare the blue OLEC ink, polymer was
first dissolved into toluene, and followed by DCH18C6 and
LiCF;SO; to obtain polymer volume concentration 10 mg/mL
and 1 : 0.1 : 0.02 mass ratio of polymer, DCH18C6 and
LiCF;S0,"). The ink was stirring overnight and heated at 50 °C.
The ink was filtered through 1 pm pore size PTFE filters before
use. The SuperYellow OLEC ink follows the same procedure,
but with different solid electrolyte PEO and metal salt
KCF;SO,®. The solvent was cyclohexanone instead of toluene.
The so-called high conductive PEDOT:PSS inks (PEDOT:PSS P
Jet HC V2 and 700N) were purchased from Heraeus. The
PEDOT:PSS ink was filtered through 0.2 pm pore size filters
before injection into printer cartridge. Pre-patterned ITO glass
substrates and encapsulation epoxy were purchased from Ossila
Ltd.

Equipment: An Unijet Omni-100 inkjet printer (Unijet,
South Korea) with a DMC printhead with 10 pL nozzles was
used for inkjet printing experiments. A Zygo white light
interferometer was used to measure the layer thickness and
surface profile. A Plasma oven with 2.4 GHz generator with
argon and oxygen flow was used for surface activation.

Solution processed blue OLEC on ITO fabrication: Pre-
patterned ITO substrates were cleaned in a series of ultrasonic
baths with various tenside. Afterwards, substrates were activated
by oxygen ambient atmosphere plasma (200 W, 2 min). Then,
10 mg/mL OLEC ink was spin-coated with 1000 RPM, 60 s and
wiped with Q-tips. Sample was then treated by an ambient
atmosphere argon plasma treatment (50 W, 30s) to achieve
good wetting for PEDOT:PSS layer deposition. Transparent
conductive PEDOT:PSS layer was inkjet printed with a dot-
spacing 40 pm on top of the active layer. Finally, encapsulation
epoxy was drop-cast and covered by a glass coverslip right after
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15 min vacuum drying in order to remove oxygen content within
devices. Encapsulation was completed by a short UV irradiation.
Fully solution processed yellow OLEC fabrication:
Glass substrates were cleaned by acetone and dried by nitrogen
flow. PEDOT:PSS layers were inkjet printed with a dot-spacing
40 um, and annealed at 150 °C for 10 min. Then, 20 mg/mL
Zn(acac), in ethanol was spin-coated with 1500 RPM, 45s. A
ZnO layer was generated by annealing the sample at 120 °C for
45s. Afterwards, 10 mg/mL SuperYellow OLEC ink was spin-
coated with 1000 RPM, 60 s and wiped with Q-tips. The rest
procedure is the same as samples fabricated on ITO substrates.

Results and discussion

As it can be seen from

Figure 1, thanks to the benefit of in-situ doping, the basic
layer structure only consists of an ITO cathode, a spin-coated
blue light-emitting polymer plus dopants on ITO and an inkjet-
printed PEDOT:PSS transparent top anode, which is much
simpler for solution processing, in particular inkjet printing.
Lithium triflate is chosen as the dopant salt because of its good
electrochemical behaviors in batteries. While DCH18C6 is
selected for the solid electrolyte due to its good ionic solubility
and compatibility with light-emitting polymers and non-polar
solvents. Moreover, with this electrolyte, the fabricated OLECs
can achieve much faster turn on time when the P-i-N junction is
frozen at room temperature’”. The mechanism is mainly because
that crown ether has a melting point of ~50 °C, and it shows
good ionic conductivity only when the temperature is higher
than the melting point. Therefore the OLEC can show fast turn
on if it is first doped at elevated temperature and "frozen" at
room temperature.
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Figure 1, Layer architecture diagram of fully solution processed blue OLEC
on ITO

The device did not emit more light at relatively low driving
voltage (< 15 V), because the work-function of oxygen plasma
activated ITO is higher than silver, which hinders the electron
injection speed. However, when the blue OLEC on ITO sample
was driven at pulse mode with much higher voltage (e.g. 45 V),
a much higher brightness was achieved (see Figure 3a). The
main reason could be the highly homogeneous surface of ITO
electrode, which led to homogeneous pixel (see Figure 2a&b).

The device emits low light intensities at relatively low
driving voltages (< 15V). This is likely because the work-
function of oxygen plasma activated ITO is relatively high
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(~4.8¢eV), which hinders the electron injection capability.
However, when the blue OLEC on ITO sample was driven at
pulsed mode with much higher voltages (e.g. 45 V), a much
higher brightness was achieved (see Error! Reference source
not found.a).
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Figure 2, (a) Photograph of a blue OLEC on ITO sample with an
illuminated pixel; (b) Photograph of a working pixel (1.5 mm % 1.5 mm); (c)
electro-luminescence spectrum of fully solution processed OLECs on ITO

For disposable lab-on-a-chip  fluorescent sensing
applications, brightness higher than 2000 cd/m® and a moderate
lifetime are required. The first lifetime measurement was test by
pulse the OLEC on ITO sample with 100 ms on and 3 s intervals
with > 2000 cd/m? brightness. The result was plot in Figure 3b.
It can be seen that the sample is relatively stable form 1000
pulse operation, which is suitable for the basic disposable on-
chip sensing applications!'”). .

(@ 3000 (B) 5500

®tee’es o0 .
TEERX
2500 2000 REEEERR cee

8

1500

1500
10004

Brightness (cdm?)
H
Brightness (cd/m?)

g
8

T T T T T T T T T 1 o 1 . 1 i 1 ¥ I ” 1 T 13 J
10 15 20 25 30 35 40 45 50 55 o 200 400 600 800 1000
Voltage (V) Number of Pulses

Figure 3, (a) Voltage — brightness curve of a blue OLEC sample driven at
pulse voltage mode; (b) 1000 pulses lifetime measurement of a blue OLEC
on ITO driven at pulse voltage mode with 100 ms on duty and 3 s interval.

In order to achieve fully integration organic light source
directly on microfluidic chips, ITO electrodes need to be
replaced because it is non-solution processable and high cost.
The most straight-forward method is to simply replace ITO layer
by a PEDOT:PSS layer, however it does not work well. It has
also been found out that certain work function adaptation is still
necessary to realize good performance!'"’. Therefore, a solution
processable buffer layer is necessary. ZnO is widely researched
transparent electrodes for replacing ITO, and it can be solution
processed through precursor and thermal decomposition under
humid atmosphere!'”. Consequently, ITO electrodes can be
replaced by an inkjet printed PEDOT:PSS layer and a spin-
coated ZnO layer, so a really fully solution processed and mask-
free organic light source can be directly integrated on chips. For
the first test, more stable and efficient light emitting polymer
SuperYellow was test in this ITO-free layer stacks. Figure 4
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illustrates the working yellow OLECs without ITO. The ITO-
free, fully solution processed blue OLECs is under investigation.

Figure 4, photograph of fully solution process yellow OLEC on glass
substrates with a layer stack of PEDOT:PSS // ZnO // OLEC //
PEDOT:PSS. The illuminated pixel has a dimension of 5 mm x 5§ mm and it
is driven at 15 V

1. Conclusion

In this paper, we demonstrated a fully solution fabrication
process of blue organic light-emitting electrochemical cells
(OLECs) combined by inkjet printing and spin-coating. As a low
temperature, fully under ambient conditions and with only a
short vacuum drying fabrication process, it is a promising light
excitation source for portable and disposable lab-on-a-chip
systems which require on-chip fluorescent sensing. By replace
the silver cathode with ITO electrode, a brightness of
> 2000 cd/m? and stable > 1000 cycles were achieved, which
fulfils the basic requirement for on-chip fluorescent sensing. The
on-chip fluorescence/absorption sensing test with inkjet printed
organic photodiodes is under investigation and will be present in
the near future. Moreover, the ITO electrode can be replaces by
inkjet printed PEDOT:PSS layer and spin-coated ZnO layer,
which provides mask-free and low cost integration on
microfluidic chips.
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