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Abstract 
We report performance of an inkjet printed OLED 

device suitable for a 55inch display at 4k2k resolution. Device 

efficiency, voltage, emission spectra and lifetime are presented 

and the effect of the uniformity of the printed layers on these 

parameters is discussed. The manuscript then goes on to discuss 

the readiness of inkjet print technology and the requirements of 

the inks for producing high resolution OLED displays.  

Introduction 
Inkjet printed (IJP) organic light-emitting diode 

(OLED) technology has accelerated dramatically in recent years, 

with IJP OLED performance metrics and manufacturing 

processes now approaching the requirements for large area 

displays [1, 2]. Here we examine in detail some of the features 

of inkjet printed devices that effect the final performance. 

Results from printed OLEDs are demonstrated with all materials 

in the device layers developed by Merck KGaA. Figure 1 shows 

the device stack for a green IJP OLED, although the results 

discussed here are equally applicable for the printed layers in red 

and blue devices. The hole injection layer (HIL), hole-transport 

layer (HTL) and green emissive layer (GEML) are printed. 

Subsequent device layers are evaporated through a common 

mask. These evaporated layers include the hole blocking layer 

(HBL), electron transport layer (ETL) and cathode. 

 

 

 

 

 

 

 

 

Figure 1. Printed OLED Device Architecture. HIL, HTL and GEML are inkjet 

printed. HBL, ETL and Cathode are deposited via vapour deposition 

In this manuscript we will present the performance of 

such an inkjet printed device and continue with a discussion on 

the effect the topography of the layers has on the device 

performance. These results will be extrapolated to a discussion 

on the salient issues for printing at higher resolutions.  

 

 

 

Results 
All devices were fabricated in full at Merck KGaA 

laboratories in Darmstadt, Germany. Bottom emission IJP 

substrates with 80ppi resolution were used as a platform, with 

each substrate having 4 individually addressable pixels. Each 

pixel is itself divided into an array of commonly addressable sub-

pixels. Each sub pixel has an emissive area defined by a 212 μm 

long axis and a 64 μm short axis. Total emissive area for each 

pixel is 4.606 mm2. A resolution of 80ppi was selected because 

this corresponds to ultrahigh definition (UHD) resolution 

(4K2K) for 55” panel size. The target of this work is the large 

area (TV) OLED display market. Illuminated sub-pixels are 

shown in Figure 2. IJP substrates were cleaned with deionized 

water and dried with nitrogen. Substrate and bank design is such 

that no further pretreatment is necessary. Ink wets the ITO 

surface, but remains fully contained by the bank material. All IJP 

OLED inks (HIL, HTL, GEML) were printed in air, dried under 

vacuum to form device layers, and residual solvent removed by 

annealing. Two examples of devices are shown. These examples 

are printed with identical materials and processes, except the 

EML vacuum-drying pump-down profile which was altered 

resulting in a change to the dried film topography. The process 

flow was as follows:  

 

HIL: Print in Air → Dry in vacuum → Anneal in Air 

HTL: Print in Air → Dry in vacuum → Anneal in N2 

GEML: Print in Air → Dry in vacuum → Anneal in N2 

 

After processing the printed layers, devices were 

transferred to a vacuum thermal evaporator (VTE) chamber for 

vapour deposition of common layers, including HBL, ETL and 

aluminium cathode. Devices were encapsulated using a UV-

curable epoxy edge seal. Electroluminescence (EL) spectra, 

current-voltage-luminance (UIL) and device lifetime were 

measured, with the results shown in Figure 3 and the data at 1000 

cd/m2 summarised in Table 1. For lifetime testing, initial 

luminance was set at 8000 cd/m2 with an acceleration factor of 

1.9. External quantum efficiency (EQE) data for IJP OLEDs is 

plotted against luminance in Figure 2(a) and EL spectra are 

shown in Figure 2(b), with the lifetime shown in Figure 2(c). 

Optical micrographs of the illuminated sub-pixels are shown in 

Figure 3. Figure 3(a) shows that very good emission uniformity 

can be achieved on the sub-pixel scale. Uniformity of emission 

indicates that the device layers are uniform and this results in 

strong device performance. Figure (b) demonstrates the common 

case of one or more of the layers being non-uniform. It clearly 

shows an uneven EL emission across the subpixel. Whilst the 

UIL results are largely unaffected, with both devices exhibiting 

similar performances with an EQE of 17.5 and 18.3%, a 

luminance efficiency of 64.1 and 66.9 cd/A and an operating 

voltage of 5.5 and 5.4V respectively, there is a dramatic 

influence on lifetime, with the LT95 of the non-uniform pixel 

being just 40% of that of the device with uniform sub-pixels. A 

non-uniformity in emission of this nature is dependent on the 
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topography of all the printed layers together, but most critically 

on the GEML. The bright emission is an indication of a higher 

current density in the EML at that point. As the EML typically 

has a higher resistivity than the hole-transport layers it is usually 

a sign of a thinner EML at the point of bright emission. This is 

demonstrated in Figure 4 by the profiles of the GEML layer of 

the subpixels shown in figure 2, taken across the short axis in the 

middle of the sub-pixel, with an Alphastep D600 stylus 

profilometer.  

 

 

Figure 2. EL micrograph of inkjet printed OLED with (a) uniform layers. (b) 

non-uniform layers 

 

Discussion 
All the data presented in this work is for OLEDs at 

80ppi, which is suitable for a 55’’ display with a 4k2k resolution, 

keeping in mind that each pixel contains three sub-pixels in a 

traditional RGB format. However, a number of companies, 

including Panasonic and LG Display have demonstrated 55’’ 

panels at 8k resolution, which if it were to be inkjet printed, 

would require 160ppi with each subpixel being 4 times smaller 

than those at 80ppi. Furthermore, with the popularity of tablets 

around 10’’ in size, there is a strong motivation to inkjet print 

these at up to 4k2k resolution, which would require a pixel 

density of around 430ppi. This kind of resolution is likely to be 

the limit of inkjet printing for the foreseeable future as at the time 

of writing the inkjet hardware is not available to extend printing 

beyond 500ppi. Furthermore, printing at high resolution has 

significant implications for the inks used and the film uniformity 

becomes even more critical. 

 

Table 1. Summary of performance of inkjet printed OLED at  

1000 cd/m2 

Technology readiness for high-resolution inkjet 

printing 
State of the art printheads are available with drops 

sizes down to 1 picolitre (1pl). Such a drop has a diameter of 12.6 

µm in flight, essentially defining the minimum feature which can 

be printed. Whilst it is possible to force a printhead to eject drops 

smaller than its native resolution this can be at the expense of 

stability, which is not acceptable for mass-production. Even 

though low drop volume printheads exist, for example, Fujifilm 

Diamtix (FFD) Samba, Konica Minolta KM1024 or 

KM128SNG, and the recently released XAAR 5601, at the time 

of writing they are usually marketed for graphics or textiles use, 

and not easily integrated into current R&D printers. It is worth 

mentioning the FFD Dimatix 16 nozzle R&D cartridges. These 

come as 10 and 1pl and serve a valuable purpose on R&D 

printers. However, the reproducibility is barely acceptable for 

OLED inkjet device manufacture and the frequency is severely 

limited, so demonstrating the inks functionality at comparable 

frequencies as mass production is a challenge.  

 

Figure 3. (a) EQE, (b) EL spectra, and (c) normalised lifetime, for devices 

with both uniform and non-uniform subpixels. 

The frequency required to print is dependent on the 

resolution required, R (in this case defined by the distance 

between neighbouring drops), the quality factor Q, and the stage 

speed V according to the following equation: 

 

F (Hz) = R (dpi)  V (mm/s) / 25.4  Q 

 

The 25.4 constant is a conversion factor to account for the 

different conventions in units. It turns out that this frequency is 

not strongly affected by reducing the sub-pixel size. This is 

because, as the size reduces the volume of ink required reduces 

dramatically. For example a sub-pixel for an 80ppi display, may 

be 220  64 µm in dimension and be able to hold a volume of 

300pl before overspill. A sub-pixel for a 400ppi display might be 

more like 40  10 µm, but tests in our lab have shown that such 

a pixel would hold less than 4 pl before overspill. One sensible 

print strategy is to evenly space the drops required along the 

length of the sub-pixel, so for an 80ppi sub-pixel the drop 

spacing is 6 µm with a 10 pl printhead and for the 400ppi case, 

the drops spacing is 10 µm with a 1 pl printhead.  

The next consideration is the tact-time of a printed 

substrate which is ideally as short as possible, however around 

120 seconds is a likely to be required for mass production. A gen-
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8 substrate is 2160  2460 mm in size. Assuming the printer used 

to print this has printheads along the entire width of the substrate 

so no x-direction scanning is required, then the print speed must 

be a minimum of 18mm/s to print the whole substrate in 120s. 

This would give a frequency requirement from the printhead of 

just 3 kHz, well within the operating specification of current 

industrial printheads, which will operate in ranges of 40 – 100 

kHz depending on the model. This estimation does not take into 

account mura-correction techniques, but even including these the 

operating of the printhead is unlikely to be a problem in inkjet 

printing OLEDs.  
 

 
Figure 4. Stylus profilometer traces across the small dimension of the two 

devices shown in Figure 2. 

As a final consideration in this section, the required 

stage accuracy should be estimated. For the 80ppi display pixels 

used in this manuscript the sub-pixel size is 220  64 µm. A 

repeat stage accuracy of 10 µm should be sufficient to print such 

a substrate. In reality the stage accuracies of R&D printers are 

already around 10 times better than this, with Ceradrop quoting 

an x and y stage accuracy of 1.5 µm and a reproducibility of 0.5 

µm and Unijet, who manufacture printers up to mass production 

scale quoting 3 µm accuracy and 1 µm reproducibility. In the 

authors experience these figures are usually conservative.  

 

Ink considerations for high-resolution inkjet 

printing 
As the resolution required increases, the printhead 

drop size decreases and typically the viscosity requirement of the 

printhead also narrows. For example a 10 pl printhead may be 

perfectly able to jet inks over a wide range of 1 – 20 cp, however 

a 1 pl industrial printhead, may only realiably jet 1 – 5 cp. This 

has significant implications on the ink. This is compounded at 

high resolution where less ink per unit area can be contained by 

the sub-pixel. This is not immediately obvious, but as the active 

area scales for high resolution, so does the distance between the 

pixels. It is common for the as deposited ink to bulge outside the 

dimensions of the sub-pixel and this is significantly limited as 

the resolution increases. Therefore, to achieve the same layer 

thickness for higher resolutions the concentration of the ink used 

must increase, without the viscosity rising. This gives Merck 

small molecule inks, which have almost no viscosity–

concentration dependence, a significant advantage when printing 

high-resolution OLEDs.  

The topography of the layers becomes more sensitive 

at high resolutions. It was shown earlier that the topography has 

a very strong influence on the lifetime of the device. The 

mechanism causing the shape of the layers is the same regardless 

of the resolution and is related to the ink pinning at a certain point 

on the substrate bank material. If non-level ink was only within 

5 µm of the bank material, this would be a good result for a 64 

µm wide 80ppi device, but catastrophic for a 10 µm wide 400 

ppi device, which would have only a very small percentage of 

the active area of the sub-pixel at the optimum thickness. 

Therefore, the ink and process need to be very carefully designed 

together to give flat film formation at any resolution. 

Finally, high-resolution designs would require a shift 

to top-emission OLED architectures. These typically use second-

node designs, which require much thicker cavity tuning layers, 

sometimes up to 250 nm, in contrast to bottom emission designs 

which are typically < 100 nm. This pushes the ink concentration 

to much higher values than is required for bottom emission, so 

Merck small molecule OLED inks are carefully designed in 

conjunction with a process, specifically for high resolution 

printing. 

 

Conclusions 
IJP OLED device data reported for a full stack of 

Merck KGaA materials and inks is very promising and 

demonstrates what can be achieved at resolutions suitable for 55 

inch displays with 4k2k resolution. The technology is largely in 

place to be able to research and produce IJP OLEDs up to 500ppi, 

although the industry is waiting on an easily available 1pl 

printhead solution for research purposes. With the development 

of Merck small molecule inks for OLED, it seems as though the 

ink technology will not be a limiting factor for printing high 

resolution, however great care must be taken in designing an ink 

and process to give flat films when dried. 
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