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Abstract 
        Here, we investigate the formation of inkjet-printed 
graphene oxide (GO) droplets with different flake size. It is 
shown that the size of GO flakes has strong influence to the drop 
morphology and can be used to control the CRE. The CRE was 
eliminated gradually with increased mean GO flake size (from 
0.68 to ~ 36 µm). The result suggests a new strategy to control 
the CRE, and our observation about the morphology of inkjet-
printed droplets with different flake size will be very effective to 
print uniform two-dimensional materials based patterns.   

Motivation 
       When a sessile drop of liquid containing suspended particles 
dries on a solid surface, it may leave a ring-like structure around 
the periphery of the drop after the completion of liquid 
evaporation. This phenomenon is commonly known as the 
coffee ring [1]. This phenomenon is commonly observed in 
systems with diverse constituents, ranging from nanoparticles, to 
colloids and molecules in solution [2]. A mechanism for the 
coffee-ring effect (CRE) was first described by Deegan et al.,[1] 
which proposed that the dispersed materials in the droplet are 
transported to the contact line of the drop by radial flow 
generated during the evaporating process. Although the 
ubiquitous nature of the CRE has made it hard to avoid, 
achieving morphology uniformity from evaporated drops is 
critical in many practical applications, such as graphics inkjet 
printing, micro-arrays, coatings, biosensors, and the self-
assembly of particles.  
       In the last decade, Graphene, an atom thick carbon layer 
with a honey-comb lattice, has attracted particular interest in 
both academic and industry fields because of its unique 
chemical, mechanical, thermal, and electrical properties [3].  
Graphene was observed by isolating graphite to single-atom-
thick crystallites through micromechanical cleavage method in 
2004 [4]. Since the discovery of graphene, many techniques 
have been developed to produce single or few-layered graphene, 
including mechanical cleavage, epitaxial growth, chemical vapor 
deposition, liquid phase exfoliation (LPE) [5]. Among these, 
LPE is promising suited for produce high yield of graphene due 
to its advantage of solution process. Graphene-based dispersions 
can be obtained by exfoliation of graphite or graphite oxide in 
aqueous [6] or organic solvents [7] through an ultrasonication 
process. Several groups have reported using inkjet printing 
technique to deposit graphene dispersions for electronic 
applications [8, 9]. 

Problem 
        Inkjet printing of two-dimensional graphene-based inks, 
which based on pristine few layer graphene sheets or reduced 
graphene oxide formed by liquid phase exfoliation, have 
attracted much interest in the field of printed electronics. It has 

been generally believed that inks containing small diameter 
graphene or other 2D material flakes may be beneficial for inkjet 
delivery allowing for a more stable ink and reducing 
agglommeration or blocking of the fine nozzles used with inkjet 
printing. However, during drying of printed droplets, inks 
containing 2D materials such as graphene or GO show a 
behaviour similar to that observed during the drying of inks 
made from nanoparticles or nanotubes, i.e. they show a clear 
CRE with the dried 2D flakes arranged at the contact line of the 
dried droplets forming a characteristic ring-like structure [8]. 
Although the CRE can be suppressed by using a combination of 
two solvents or adding surfactant and a high boiling point 
solvent, the harsh post-treatment condition required and 
restrictions to the use of some organic solvents limits these 
mitigating techniques for large area applications. 

Approach 
        In this work, we will investigate the morphology formation 

of inkjet-printed graphene oxide droplets with different flake 

size after drying. GO inks with a range of mean flake size were 

obtained by ultrasonically milling inks with very large flake size 

for a range of process times, with increasing sonication time 

leading to a smaller mean flake size. GO inks of the initial large 

flake size were obtained using a modified Hummers’ method to 

produce GO dispersions with mean flake size 35.9 µm. This 

method allowed us to produce a range of GO inks with mean 

flake size ranging from 0.68 to 35.9 µm. The GO suspensions 

are highly stable against sedimentation in deionised water and 

these were then used, after appropriate dilution, directly as inks 

in this study. It is shown that the size of graphene oxide flakes 

has strong influence to the drop morphology and can be used to 

control the CRE. The CRE was eliminated gradually with 

increased graphene oxide flake size. Inks with GO flake size > 

10.3 µm did not show a CRE when drops with a contact 

diameter of ~ 340 µm dried. The result suggests a new strategy 

to control the CRE, and our findings about the morphology of 

printed droplets with different flake size will be very effective to 

print uniform two-dimensional materials based pattern.  

Experimetal method 

        The preparation of the GO sheets is based on a modified 

Hummers’ method [10]. Briefly, nature graphite flakes (1.5 g, 

grade 9842, Graphexel Ltd., Epping, UK) were dispersed in 

concentrated sulfuric acid (200 ml, > 95%,  >17.7 mol, Fisher 

Scientific) by stirring in an ice bath. Then a total of 6.0 g  

466 © 2016 Society for Imaging Science and Technology

https://doi.org/10.2352/ISSN.2169-4451.2017.32.466
©2016; Society for Imaging Science and Technology



 
Figure 1. Left: SEM images of large (top) and small (bottom) size of GO sheets. Middle: Schematic representation of the deposition of printed droplets with 

large GO and small GO. The dash lines shows the capillary flow during the drying process. The droplet cantaining of large GO flakes gives a uniform 

distribution after drying, while the droplet containing of small GO flakes shows a ring-like structure after drying. 

KMnO4 (Lot # MKBK7079V, Sigma-Aldrich) were added at 24 

hour intervals over 4 days (1.5 g each time). The prepared GO 

flakes was break-down to smaller size by treating with tip 

sonication for different times. 

       The prepared GO inks were printed on pre-cleaned Si/SiO2 

substrates by using an in-house designed and built laboratory 

inkjet printer (MPP 1000) was equipped with drive electronics 

(JetDrive III, Microfab, Plan, TX, USA) interfaced to a PC and 

controlled in a LabVIEW (National Instruments, Austin, TX, 

USA) system. The diameter of printhead is 60µm and the 

temperature of substrate was set to 30 ° C. 

     The images of dried GO droplets were captured using an 

Olympus BH-2 optical microscope (Olympus, Tokyo, Japan). 

The morphology and structure of the GO sheets and GO droplets 

were characterized by scanning electron microscopy (SEM, 

XL30 FEG-SEM, FEI, Eindhoven, Netherlands). The size 

distribution of GO sheets was calculated from SEM images by 

the software ImageJ (NIH, Bethesda, MA, USA). 

 

Results 
       Figure 1 shows the schematic of the deposition of printed 

droplets with large and small GO flakes. The large GO flakes 

was prepared by a modified Hummers‘ method as decribed in 

experimental section, while the small GO flakes was obtained by 

treating the GO ink with tip sonication for 30 mins. By analysing 

more than 200 flakes from serval SEM images as shwon in 

Figure 1 left, the mean size of large and small GO flakes are 

35.9±23.2, and  0.68±0.31µm, respectively. It mentioned that the 

drying GO droplets from large flakes showed a uniform 

distribution, while the GO droplets form small flakes were 

stacked at the edge of the drying drop which showed a CRE like 

structure (shown in Figure 1 right). 

       Figure 2 shows the typical SEM images of drying GO 

droplets. It is noticed that the GO droplets with large flakes 

showed a uniform distribution. The intensity profile of the 

corresponding area further indicated the uniformity of the 

droplet. The higher intensity area is due to the overlap of large 

flakes or folded flakes. On the other hand, the droplet with small 

flakes showed a very strong CRE at the edge of the droplet. A 

high intensity and shape edge was observed from the intensity 

line profile. 

 

 

Figure 2. SEM images of printed GO droplets from large (a) and small (b) 

flake size. Intensity line profiles of the corresponding SEM images are 

shown to demonstrate this phenomenon. 

       To further investigate the effect of flake size to the final 

morphology of drying GO droplets, we prepared four types of 
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GO dispersions in water with different lateral sheet sizes. The 

mean flake size of these GO inks is 0.68±0.31, 2.32±1.54, 

10.3±9.6, and 35.9±23.2 µm, respectively. Figure 3 shows the 

optical images of drying GO droplets on Si/SiO2 substrates with 

increasing GO flake size. It is noticed that the droplet based on 

smallest flakes (0.68 µm) showed a ring edge with high contrast 

colour to substrate which indicated the high degree stacking of 

GO flakes. With increasing flake size to 2.32 µm, the colour of 

the edge of the droplet was weaken, which means less stacking 

of GO flakes. With the flake size increasing to 10.3 µm, the 

morphology of the droplet became uniform and no obviously 

stacking of flakes. Further increasing the flake size to 35.9 µm, 

the CRE phenomenon was completely disappeared and a 

uniform distribution of GO flakes was observed. 

  

 

Figure 3. Optical microscopy image of drying GO droplets on Si/SiO2 with 

different flake size: (a) 0.68±0.31, (b) 2.32±1.54, (c) 10.3±9.6, and (d) 

35.9±23.2 µm. All scale bars are 100 µm. 

Conclusions 
The GO ink with mean size of 36.9 µm was 

synthesised from nature graphite by modified Hummers’ 

method. By further treated with tip sonication for different time, 

the mean size of GO flakes was break-down to smaller size to 

0.68 µm. It was found that when printed drops with diameter 

around 340 µm drying on Si/SiO2 substrates at 30 °C, the coffee 

ring effect could be overcome when the GO flake size larger 

than 10.3 µm. Therefore, the coffee ring effect for drying GO 

droplets can be overcome through increasing the GO flake size. 
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