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Abstract 
A novel approach of using layer-by-layer (LBL) reactive 

inkjet printing (RIJ) of regenerated silk fibroin (RSF) was used 
to generate micron-sized silk rockets which have the enzyme 
catalase immobilised inside the silk scaffold structure and use 
the catalase enzyme to drive their motion in samples containing 
H2O2 as a fuel. By using the LBL printing approach we show 
that is it possible to generate 3D structures where different 
materials can be incorporated into the structure at defined 
locations. The use of silk together with an inkjet printing 
method has great potential to easily incorporate different 
enzymes, proteins, chemicals or other biomolecules and build 
versatile devices by entrapping them into the silk scaffold.  This 
allows us to generate small-scale devices that can generate 
thrust via catalytic reactions within fluidic environments for 
potential applications including environmental monitoring and 
remediation, in vivo drug delivery and repair, and lab-on-a-
chip diagnostics. In contrast, current manufacturing processes 
of micromotors often use slow and lengthy production 
processes (e.g. evaporation) combined with expensive materials 
such as platinum. The location of catalyst on these devices has 
been shown to influence trajectory behaviour, which is not easy 
to control using conventional methods. Furthermore devices 
using platinum as a catalyst can undergo biofouling thus 
inhibiting their catalytic reactions. By using biocompatible silk 
scaffolds, created by RIJ, the devices generated here have the 
potential to overcome all these problems. 

Introduction 
Over the last ten years the production of small-scale 

devices that are able to generate autonomous motion via 
catalytic reactions within fluidic environments has become an 
increasingly active field of research. [1-5] The potential 
applications for these devices, including Lab-on-a-Chip 
diagnostics, [6] environmental monitoring, water remediation, 
[7-11] as well as in vivo drug delivery and repair [12], have 
been one of the key aspects why these devices have received 
increasing attention. It is however important to note that current 
production methods and materials have many limitations. A 
large proportion of devices are based on lithographic 
approaches in order to control the shape and catalytic 
distributions, which means that there are many limits to the 
design of devices particularly in respect to future scalability. 
Further to this, these devices frequently use expensive metals 
such as gold and platinum which require high vacuum 
evaporation systems or complex chemical processes in order to 
produce thin metal coatings. In addition, these metal coatings 
are highly susceptible to biofouling, thus inhibiting their 
catalytic reactions and therefore meaning that the particles 

cannot swim in biological fluids without the addition of 
surfactants, which are undesirable.  

In the pursuit of effective propulsive devices via chemical 
reactions it is of vital importance to be able to control the 
distribution of catalyst as well as the shape of the devices. [13]  
There are two main propulsion mechanisms for catalytic micro-
motors: Firstly, they can be moved by phoretic phenomena, for 
these an asymmetric distribution of catalyst is essential. [3, 4, 
14-17] The second mechanism is by momentum transfer during 
gas bubble detachment (bubble propulsion). [18-20] Here 
catalyst location has been shown to improve directionality. [13] 
The devices we investigate here move through the latter 
mechanism. In order to make devices that contain the required 
distribution of catalysts, often difficult and time-consuming 
methods such as the evaporation of metals (e.g. platinum) are 
necessary. [5, 21] Platinum is often a choice of catalyst as it 
catalyses the decomposition of hydrogen peroxide (H2O2) into 
water and oxygen. In contrast to platinum based micro-motors 
there have been examples of micro-motors that use the enzyme 
catalase as a catalyst, however current micro-motors using 
enzymes as catalysts predominantly also need to use of metal 
surfaces for the initial covalent attachment via complex 
chemical reactions, and are once again time consuming as well 
as not achieving very high catalytic reactivity. [22-24]  

Pursuing devices that have the ability to provide functions 
for cargo transport [8] equally needs well-defined structures. 
Because of significant challenges in current technologies to 
produce these devices, it at present has not been possible to 
rapidly design and test various designs easily and thus slowing 
down the development of these devices for future applications. 
Recent developments in the swimming field to produce new 
production methods has seen the device manufacture via screen 
printing of platinum powered devices [25, 26], but here 
physical masks or advanced digital micro-mirror devices [26] 
have to be used. Further issues with catalytic micro-motors 
containing platinum as a catalyst are that these devices are 
highly susceptible to contamination by hydrocarbons [27] and 
thiols [28] as well as surface fouling in biological fluids such as 
human serum where proteins are absorbed to the metal surface 
in habiting the catalytic reactions. In order for these devices to 
function in bio fluids undesirable additives such as surfactants 
have to be added [29] to reduce the fouling behavior. [30]  

In contrast to this, here we show the possibility of 
producing rapidly moving autonomous bubble-propulsive silk 
micro-rockets via RIJ [31] of RSF, an FDA approved material, 
which are powered by the catalytic enzyme catalase. These 
devices show high biocompatibility and usability for a wide 
range of applications.  

As shown representatively in the schematic in Figure 1 
the catalase enzyme contained within the silk lattice structure 
decomposes the hydrogen peroxide fuel into water and oxygen 
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(Eq. {1}), which are released from the silk rockets as bubbles 
allowing for the bubble propulsion mechanism to take place.  

Silk fibroin is a versatile material, which has been known 
for its strong mechanical properties, [32] easy processing [33] 
as well as its, excellent biocompatibility [34] and tunable 
biodegradability. [35] RIJ allows the printing of methanol on 
top of the printed silk ink transforming it from water soluble 
Silk I (random coil structure) state to water insoluble Silk II (β-
sheet secondary structure) state. [36-38] Therefore, if an 
enzyme such as catalase is mixed with the water soluble silk 
ink (Silk I) and this mixture is then exposed to methanol the 
enzyme molecules are entrapped into the newly formed silk 
scaffold (Silk II) and thus securely encapsulated within the 
solid silk structure. [39]  
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Figure 1. Schematic representation of inkjet-printed silk micro-rockets 
containing the enzyme catalase which decomposes hydrogen peroxide 
fuel molecules into water and molecular oxygen (see Eq. {1}). The 
produced oxygen bubbles therefore induce the silk micro-rocket’s 
propulsive motion. Red half of the Janus micro-rocket is the silk /PEG400/ 
catalase/ containing segment whereas the orange half is the segment only 
containing silk/PEG400. 

Results and Discussion 
In order to achieve a rocket-like (column) structure it was 

necessary to deploy a layer-by-player RIJ printing approach. 
Figure 2 shows a schematic representation of the final design 
used for Janus micro-rockets which we recently reported (in 
Small [39]). Here we look into the aspects involving how silk 
concentrations and the addition of PEG400 along with PMMA 
barrier layer affect the bubble release and swimming behaviour 
of our rockets. The process of printing RSF silk solutions via 
RIJ is described in more detail in Y. Zhang’s paper that will be 
presented at this conference as well.  

In order to fabricate 3D silk scaffolds, which were capable 
of generating stable long lasting swimming devices silk 
concentrations were important to consider. Observations 
showed that at concentrations below 20 mg/ml of RSF 
swimmers when placed into liquid showed sponge-like features, 
which were not rigid and deformed more during catalysis. After 
testing a variety of concentrations it appeared that at 30 mg/ml 
a good rigid silk structure was present that would remain 
structurally sound, long past the experimental tests. In a next 
step it was important to ensure bubble detachment was efficient 
which was tuned by adding PEG400. 

 
Figure 2. Schematic of the RIJ process for manufacturing catalytic micro-
rockets, optimized [39]. Stage 1: Alternate printing of a silk/catalase/PEG 
(purple) ink and a methanol (white) ink (transforms printed silk ink from 
Silk I to Silk II) to build the catalytically active base of the micro-rocket. 
Stage 2: 10 layers of PMMA (blue) ink are deposited to act as a divider 
between the two halves of the rocket (to stop the penetration of oxygen 
bubbles generated into the inactive part of the micro-rocket). Stage 3: The 
second half of the rocket is deposited as in stage 1, but a silk/PEG 
(orange) ink is now used. Stage 4: Manufacture complete, substrate is 
immersed into the fluidic swimming media. Stage 5: Ultrasonication is 
used to detach the micro-rockets from the substrate.  

Effects of PEG400 on the silk micro-rockets 
PEG400 plays an important role in achieving successful 

bubble detachment from the silk micro-rockets. Figure 3A 
clearly shows that silk rockets not containing PEG400 ended up 
generating one large bubble which would eventually burst, but 
only after growing to a very large size which in turn did not 
generate the continuous desired propulsion. By adding PEG400 
into the RSF ink frequent bubble release was achieved allowing 
the swimmers to undergo bubble propulsion, as can be seen 
from Figure 3B. The addition of PEG400 to the silk rockets 
altered the bubble release efficiency, this means it is possible to 
fabricate rockets with a lower amount of PEG400 to alter the 
bubble release efficiency. It appears that PEG400 alters the 
hydrophobicity of the silk rockets [40] (see Figure 4) and 
therefore bubbles detach more readily, where the addition of 
more PEG400 decreases the hydrophobicity. [41] Further to this, 
an observation was made that for silk inks not containing any 
PEG400 enzyme accumulation around the orifice of the print 
nozzle was much stronger than for inks containing PEG400, 
meaning that more frequent cleaning of the nozzle was 
necessary. 

 
 

Figure 3. (A) Silk swimmer containing catalase enzymes but with no 
PEG400 blended in showing the bubble detachment / popping issue (Image 
is taken from above so looking down onto the particles). (B) Silk swimmer 
containing PEG400 showing efficient bubble release. 
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Figure 4. Contact angle measurements of 5 layers of spun cast silk (20 
mg/ml) with different concentrations of PEG400 blended in. 

As the printed silk scaffolds are of porous nature, this 
allows for enzyme molecules locked within the centre of the 
rocket to still be able to decompose hydrogen peroxide, 
increasing the overall  accessibility of the enzyme. This means 
the amount of enzyme that is able to catalyse the reaction is far 
greater than that of enzyme monolayer coverage of other 
previously described devices. However this also generates a 
problem in regards to fabricating micro-rockets which have an 
active and an inactive area. As shown in Figure 5A silk rockets 
made up of an active and a non-active segment (with and 
without catalytic enzyme) show to produce bubbles across the 
entire particle, we assume due to the porosity of the silk lattice 
structure oxygen leeches through the entire structure and 
escapes across all sides, where the active side still shows a bias 
for more bubbles being released, this scenario is far from ideal. 
In contrast if a PMMA barrier layer of a mere 10 printed layers 
is introduced between the two segments of the Janus particles 
the leeching of bubbles between the two segments stops and a 
highly directional trajectory is generated due to bubbles being 
release from only the active side of the Janus silk micro-rockets 
(Figure 5 B).  

 

 
Figure 5. (A) Janus Silk swimmers made up of one segment containing 
Silk/Catalase/PEG400 and the other segment containing Silk/PEG400. (B) 
Janus silk swimmer made up of one segment containing 
Silk/Catalase/PEG400, a barrier layer of PMMA (10 layers), and the other 
segment containing Silk/PEG400. 

Conclusions 
RIJ offers a versatile and easy way to be able to generate 

micro-motor devices such as the rockets described here, which 
are capable of swimming in a variety of media containing H2O2 
fuel via a bubble propulsion mechanism. By using RIJ we are 
capable of generating a large variety of micro-motors by using 
a variety of inks, which can be digitally defined. By increasing 
the RSF concentration to 30 mg/ml we show the production of 

rigid stable micro-motors. We also show that the addition of 
PEG400 allows for a better bubble release and also diminishes 
the accumulation of enzyme residue on the orifice, thus 
enabling longer printing times without the need for frequent 
cleaning. Finally we show that due to the porous nature of silk 
the addition of 10 layer of PMMA between inactive and active 
parts of micro-motors helps to discourage the bubble release 
into the inactive half of the micro-motors and therefore allows 
for better trajectory control. 

Experimental 

Preparation of silk fibroin solution 
Bombyx mori silk was degummed in order to remove 

sericin by briefly boiling the raw silk for 30 minutes in (0.02 
M) sodium carbonate (Na2CO3) (99.5 % Alfa Aesar). The 
degummed silk was rinsed with deionized water until the 
solution was clear and then dried at 60 °C overnight in a drying 
oven. 

The dried silk fibroin was dissolved in Ajisawa’s reagent 
(CaCl2 (93 % Sigma-Aldrich) / ethanol (99.8 % Sigma) / water 
in a 1:2:8 molar ratio) [42] at 75°C for 3 hours and was left to 
cool down at room temperature before being dialysed against 
deionized water until the solution recorded a conductivity of 
less than 1 µS. The dialysed silk fibroin solution was then 
centrifuged at 5,000 rpm for 15 mins in order to remove any 
particulates and fibres. 

Preparation of different ink solutions 
Amorphous bovine liver catalase powder (purity 60%, 

5000-6000 U/mg, Sigma-Aldrich) was dissolved in deionised 
water at a concentration of (20 mg/ml) and then filtered with a 
(0.7 µm) glass filter. The following inks were the ones used for 
the final optimised Janus silk rockets, other inks were made by 
altering specific concentrations.  

Ink A (for printing the rear end (active part) of the Janus 
micro-rockets): Catalase (CAT) solution was carefully blended 
(by inverting the vial several times) with PEG400 RSF solution 
to give final concentrations of (4 mg/ml CAT), (10 mg/ml) 
PEG400 and (30 mg/ml) RSF.  

Ink B (for printing the barrier layers of the Janus micro-
rockets): Poly methyl methacrylate (PMMA) from Sigma-
Aldrich (MW/~15000) was dissolved in N, N-
Dimethylformamide (Sigma-Aldrich 99.8%) (DMF) with a 
concentration of 10% wt/V (PMMA/DMF). 

Ink C (for printing the front end (inactive part) of the 
Janus micro-rockets): RSF solution was carefully blended with 
PEG400 to give final concentrations of (30 mg/ml) RSF and (12 
mg/ml) for PEG400. The PEG400 concentration was chosen to be 
slightly higher for the part containing only silk as it discouraged 
bubbles sticking to the inactive side. 

Ink D (for transforming RSF into β-sheet structure): 
(98.99%) pure methanol (Sigma). 

 

Inkjet printing process 
A MicroFab “Drop on Demand” printer with JetLab 

software (MicroFab Technologies, Version 6.3, build 
4.0.18.3011) and four single nozzled print heads (with nozzle 
diameter of 60 µm) were used for the printing.  

5 x 10 dot matrices were programmed into JetLab software 
and columns of a total height of 500 layers of silk inks (ink A 
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or C) were printed layer-by-layer (LBL), which equated to total 
heights of 250~300 µm. Ink D was printed between each silk 
layer to transfer the soluble silk inks into insoluble β-sheet 
structure.  

The micro-rockets were printed on clean silicon wafers. 
For the fully active micro-rockets, ink A and D (500 layers of 
each ink) were alternatively printed. In the case of Janus micro-
rockets, ink A and D (250 layers of each ink) were alternatively 
printed for the rear end of the Janus micro-rockets. A barrier 
layer of 10 layers of PMMA (ink B) was then printed on top in 
order to decrease the amount of bubbles leaking from the active 
half to the inactive half. And finally, ink C and D (250 layers of 
each ink) were alternatively printed to form the front end of the 
Janus micro-rockets. This process generated Janus particles that 
were half active (the rear end) and half inactive (the front end). 
Device optimisation experiments found that using 250 layers 
for inks C and D gave well defined “rocket” type aspect ratios, 
similar to those used in other directional swimming devices 
such as bi-metallic nanorods.  PMMA layer thickness was also 
optimised with the aim to find the minimum number of layers 
required to prevent bubbles diffusing into the inactive side of 
the rockets.  

 

Particle preparation of silk – based micromotors 
Silicon wafers with printed micro-rockets were incubated 

in filtered (0.2 µm glass filter) deionized water, which was then 
carefully removed via a Pasteur pipette, ensuring the printed 

micro-rockets were not detached from the surface. Any dust 
and silk that was not in β-sheet form was removed in this 
washing step. This process was repeated 3 to 5 times.  

After washing the Si-wafers were placed in a small beaker 
and the surface was covered with deionized water and held in 
the centre of a sonicator (2L 50W Bath sonicator – Eumax) for 
< 30 seconds until all or most columns were detached from the 
wafers. The recovered yield of micro-rockets was upwards of 
80%.  We qualitatively observed that detachment immediately 
after manufacture gave the highest yield, approaching 100%.  
The brief sonication process did not show any signs of 
damaging the rockets. The micro-rocket columns were then 
transferred into a petri dish (6 cm in diameter) containing 5% 
wt/V hydrogen peroxide and imaged under a microscope with a 
connected PixeLink camera, or under a PixeLink camera with a 
camera lens attached. Movies were taken at a frame rate of 25 
frames per second (fps) for 500 to 1000 frames.  
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