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Abstract 
A crosslinking agent (glutaraldehyde) was selectively inkjet 

printed at predetermined locations onto a sheet of virgin gelatin 
and washed to create biocompatible scaffolds of bespoke shapes. 
Fibroblasts were seeded onto these scaffolds and were shown to 
proliferate with no detrimental effects for 3 days compared to 
controls. This method of creating biocompatible scaffolds takes 
advantage of inkjet printing’s ability to create complicated 
designs without compromise at a range of fibre diameters from 
as thin as 80µm. Fibroblasts were seen to cover the entire 
surface. Future research will be focused on using such 
technology in nerve repair. 

Introduction 
Research into cell patterning and spatial coordination 

are growing fields, as new technologies enable researchers to 
accurately position populations of cells and promote the design 
of better biological systems.[1]–[3] When considering the design 
of cell patterning experiments, geometry and topology are 
important factors that affect anchorage-dependent cells,[4]–[7] 
as living cells actively investigate their surroundings, which can 
influence function and morphology.[8] The wealth of knowledge 
that can be generated through studying cell-to-cell behaviour and 
cell-to-substrate interactions can allow scientists to better 
understand the dynamic mechanism that affects cell architecture, 
polarity, morphology, survival and division within their 
surrounding environments.[4], [9]–[11]  

Gelatin is one of the most commonly used hydrogels 
for mammalian cell growth[12] and biomedical applications. 
Such biomedical applications include drug delivery through hard 
and soft capsules, wound dressings, cell encapsulation and in 
vitro tissues [13]–[15]. Gelatin is a biocompatible denatured 
protein of collagen that is biodegradable, non-immunogenic and 
can be controlled at a desired rate by altering the cross-linking to 
suit its purpose. Cross-linking of the biopolymer is required as 
virgin gelatin turns into its sol state at biological temperatures 
(37°C), which upon cooling returns to a thermoreversible 
hydrogel. 

Transglutaminase,[16], [17] genipin,[18], [19] 
formaldehyde,[20] carbodiimides,[21] riboflavin[22] and 
glutaraldehyde[23], [24] have been researched extensively as 
crosslinking agents for gelatin. All crosslinking agents offer a 
degree of toxicity, and although glutaraldehyde has been shown 
to cause the most cell death as a crosslinking agent, 
glutaraldehyde provided the best mechanical strength and was 
selected. 

Crosslinking of gelatin by glutaraldehyde occurs 
through the aldehyde groups reacting to the free amino groups of 
lysine or hydroxylysine amino acid residues on gelatin 
molecules.[25] Primary amines and secondary amines react with 
the aldehyde group in glutaraldehyde through nucleophilic 
addition to form carbinolamines, which can then dehydrate to 
give substituted imines and enamines respectively. A range of 
possible resultant products are outlined in Scheme 1. This 
diagram shows collagen reacting with glutaraldehyde. Many of 
the reactions involve the formation of a Schiff base intermediate 
(Structure III) that is able to form a plethora of products. It is 
through this reaction that the mechanical properties of gelatin 
and its mechanical properties increase; through the generation of 
bigger complex compounds within the gelatin. 

 

Scheme 1. Gelatin is denatured collagen, and the various reactions 
pathways shown here can be related to the crosslinking of gelatin (i.e. Coll-
NH2 = Collagen-amine group). Taken from Damink et al. 1995.[26] 

Much has been learnt recently about cell behaviour in 
a micro-environment and the creation of microstructures, that 
are essential in the understanding of fabricating micro-devices to 
control cell-substrate interactions.[27]–[30] The importance of 
such research was highlighted in a special themed issue of Soft 
Matter in 2014 on cells in patterned environments.[31] Being 
able to control the fabrication of biocompatible scaffolds and 
able to seed cells thereafter allows the creation of scaffolds 
suitable for tissue engineering, biosensors, the formation of 
neuronal networks, cell-based assays and for the study of cell-
cell interactions. 

Results and Discussion 
25% glutaraldehyde (in distilled water) was inkjet 

printed onto 4% (w/v) gelatin of various shapes, to create the 
most structurally stable scaffolds (Figure 1). 

 

Figure 1 Crosslinked gelatin patterns created with an inkjet printer. 25% 
glutaraldehyde was printed onto a bed of 4% gelatin with a droplet spacing 
of 100 µL, left for 24 hours for crosslinking to take place, and then 
compartmentalised in well plates prior to washing with 50°C distilled water 
five times to remove uncrosslinked gelatin and residual glutaraldehyde.  

The resultant crosslinked gelatin structures were 
handled successfully and fibroblasts were seeded into the 
scaffolds. Fibroblasts were able to grow on the patterned 
environments on all days that they were observed (day 1, 2 and 3 
after cell seeding). Figure 2 shows an example of images taken 
of the scaffolds seeded with fibroblasts. The structure appears 
“furry” due to the surface of the hydrogel being populated by 
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fibroblasts. Seeded fibroblasts proliferated at a rate that is typical 
for healthy cells, as can be seen under the microscope. If the 
scaffolds did release glutaraldehyde, or it was detrimental to cell 
health, the population of cells would have decreased on the 
scaffold, or more cells would adopt a spherical shape to indicate 
unfavourable culture conditions and undergo apoptosis. These 
types of physical cues were not seen in all samples examined. 
 

 

Figure 2 Microscopy images of fibroblasts seeded onto crosslinked gelatin 
through inkjet printing glutaraldehyde onto a bed of gelatin. Images taken 1 
and 3 days after cell seeding respectively. Scale bar = 300 µm 

The gelatin scaffolds that were created had a range of 
thicknesses, ranging from 250-100 µm, being thickest at the 
intersections. The beams resembled a more cylindrical shape, 
which was caused by the way in which the glutaraldehyde 
diffused uniformly from the area of deposition.  
Figure 3 shows enlarged light microscopy images of the cell 
seeded gelatin scaffolds.  
 

 

Figure 3. Enlarged microscopy images of fibroblasts seeded onto 
crosslinked gelatin through inkjet printing. Images taken 1, 2 and 3 days 
after cell seeding respectively. Scale bar = 150 µm 

On day 1 after cell seeding, cells manage to adhere 
and begin to proliferate on the scaffold. There is a larger 
population of cells proliferating on the side of the scaffold that 
was facing the cell seeding process, but it is interesting to see 
cells have also managed to grow on the periphery and underside 
of the scaffold.  

By day 2 and 3, as shown in Figure 3 there are no 
detrimental effects of crosslinking with glutaraldehyde, cells 
have proliferated along the whole structure. More alignment of 
the cells can be seen on day 2, that are running in the same 
direction as the beams. The alignment was lost once the 
population of fibroblasts become overconfluent growing on the 
scaffold. 

Confocal images were recorded to analyse the cell seeded gelatin 
scaffolds. Due to the 3D nature of the scaffold, the confocal 
images capturing a plane of the scaffold show a limited amount 
of data. However, the details that can be seen by analysing each 
pane individually makes it clear that some fibroblasts were able 
to infiltrate into the scaffold and proliferate within. Figure 4 
shows a cross-section of a gelatin scaffold seeded with 
fibroblasts after 3 days of cell seeding. The periphery of the 
image shows a row of cells on the surface of the gelatin scaffold; 
stained for actin (red; phalloidin-FITC) and nuclei (blue; DAPI), 
and also note the cells situated in the middle of the image. These 
cells are proliferating within the gelatin scaffold, and it is that 
the fibroblasts were able to not just proliferate on the surface of 
the gelatin, but also infiltrate inside the hydrogel. 
 

 

Figure 4 Confocal image of a cross-section of the middle of a gelatin 
scaffold beam stained for actin (red; phalloidin-FITC) and nuclei (blue; 
DAPI) 

Several areas were analysed, and a z-stack was created 
of each area. By combining the z-stack images with the Zeiss 
LSM Image Browser software, a 3D model of the scaffold was 
created. The majority of cells that proliferate on the scaffolds 
were proliferating on the surface. A small percentage of 
fibroblasts were growing within the gelatin hydrogel, and this 
population increased over time.  Most cell proliferation occurred 
on the outside of the scaffold, as it was most likely caused by the 
cells preferentially proliferating to areas with the least 
resistance. It could be seen that there were more cells infiltrating 
the hydrogel during the second and third day after cell seeding, 
as the surface of the gelatin become more populated, the action 
of proliferating through the gelatin hydrogel became a better 
alternative than competing for space on the outer surface. 
The morphology of the gelatin scaffolds varied over time; as 
originally, the branches were typically cylindrical in shape. With 
the addition of cells, they are able to degenerate the gelatin 
slowly, and when the cell population on the gelatin become 
confluent, the gelatin scaffolds became more elongated and flat. 
Figure 5 shows the flattening of the gelatin occurring after 3 
days after cell seeding.  

In the target area, cells had fully covered the surface 
facing the cell seeding side, and cells had begun migrating into 
and enveloping the scaffold. The shape of the gelatin scaffold 
can be determined through the outlines given by the population 
of cells adhering onto and into the scaffold.  More cells can be 
seen proliferating within the hydrogel compared to samples 
analysed on day 1 after cell seeding. 
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Figure 5 fibroblasts grown on glutaraldehyde-crosslinked gelatin. A 3D 
image was generated through the stacking of multiple confocal images to 
create a z-stack. Stained for actin (red; phalloidin-FITC) and nuclei (blue; 
DAPI), day 3 after cell seeding. Cells proliferated significantly more on the 
surface side where cell seeding took place. Cells can be seen to infiltrate 
within the gelatin and grow within the scaffold. Scale bar = 250 µm. 

Conclusion 
The use of inkjet printing provides a method to create 

biocompatible scaffolds that are beneficial to tissue engineering. 
Cross-hatched and linear scaffolds were created with this 
technique and seeded cells shown to proliferate and align with 
the scaffold orientation, with this alignment becoming noisier 
through time due to over-confluency on the structures (Figure 3).  
Thinner scaffolds could be created with a lower concertation of 
glutaraldehyde, however more care must be taken to prevent 
accidental damage to the scaffolds through handling them. 
Preliminary experiments had shown that crosslinked gelatin 
scaffolds created with glutaraldehyde concentrations of 10 and 
15% produced scaffolds that were too fragile and irrevocably 
damaged during the transportation of the scaffolds from one well 
plate to another for experimentation.  

The high concentration of glutaraldehyde that was 
used did not cause the gelatin scaffold to become toxic, as it can 
be assumed that all glutaraldehyde molecules were either fully 
reacted with the gelatin, and/or all residual glutaraldehyde was 
removed during the washing process. Inkjet printing is able to 
create biocompatible scaffolds. 

Thicker scaffolds could be created by the printing of 
multiple layers of glutaraldehyde onto the bed of gelatin; 
however like all other tissue engineered scaffolds, all scaffolds 
that do not exceed a few millimetres in thickness can have cells 
proliferate on/in them, as simple diffusion is a sufficient method 
to transport nutrients into cells from the cell media and remove 
waste. A limit to inkjet printing would be that scaffolds may not 
be more than a few millimetres thick, unless a vasculature 
network is designed within the scaffold to allow directed 
transport of nutrients and cell waste throughout the scaffold. It 
could be postulated that with the simple cross hatch pattern that 
was used to create these scaffolds, once cells have been seeded, 
the scaffold could be collapsed and rolled together to form a 
larger, thicker scaffold of significant size, and with the porosity 
of the design of the scaffold, cells would survive at a better rate 
than a solid block of hydrogel of the same material. 

Experimental 
A Jetlab 4 xl-A tabletop-printing platform single 

nozzle piezoelectric inkjet device (MicroFab, Texas, USA) was 
used, equipped with drop-on-demand PH-46 printheads 
(MicroFab, Texas, USA). A CT-PT4 four channel pressure 
controller was used (MicroFab, Texas, USA) to maintain a slight 
negative pressure within the system to control a nozzle meniscus 
level for optimal jetting. A JetDrive III was used to control the 
generation of a waveform and tailor the jetting parameters to the 
printheads.  

Prior to jetting, all tubing, reservoirs and printheads 
were flushed with 1% (v/v) Micro-90 cleaning solution (10 mL 
for 10 minutes), distilled de-ionised water (20 mL for 30 
minutes) and subsequently with cell culture medium (DMEM / 
10% foetal calf serum (FCS)). The inkjet printer was calibrated 
to print the glutaraldehyde at 80 V, rise time 36 s, dwell time 
42 s, fall time 50 s and printed within 3 mm from the surface 
of the substrate.  

The scaffolds used for cell seeding were made by 
printing 25% glutaraldehyde (25% in distilled water, G6257, 
Sigma, UK). in a cross hatch pattern onto 4% gelatin (v/v in 
distilled water) on glass slides and reacted for 24 hours before 
the removal of uncrosslinked gelatin. The scaffolds were washed 
five times with 50°C water to remove uncrosslinked gelatin and 
residual glutaraldehyde and left soaking for 1 hour prior to cell 
seeding. This washing removed uncrosslinked gelatin and excess 
residual glutaraldehyde from the sample. 

Human dermal fibroblasts were obtained from 
abdominoplasty or breast reduction operations according to local 
ethically approved guidelines (under an HTA Research Tissue 
Bank license number 12179).   

Cells were cultured in a humidified 37°C/5% 
CO2/95% air (v/v) environment in Dulbecco’s modified Eagle’s 
medium (DMEM; Sigma) containing 10% (v/v) FCS (Gibco, 
UK), 1% (v/v) L-glutamine (Gibco, UK), 1% (v/v) 
penicillin/streptomycin (Gibco, UK), and 0.5% (w/v) 
amphotericin B (Gibco, UK). Porcine Schwann cells had 
0.150% (v/v) bovine pituitary extract (BPE) (Sigma, UK) and 
0.02% (v/v) forskolin (Sigma, UK) added to their cell media. 
Cells were cultured in a humidified 37°C/5% CO2/95% air (v/v) 
environment. 

Cells were grown to near confluence, and detached 
with 0.05% trypsin/EDTA (GIBCO, Invitrogen, Karlsruhe, 
Germany). A Neubauer chamber was used to count the cells. 
Passages 16-19 were used for dermal fibroblasts. 

Inkjet printing was performed within 30 minutes of 
loading a cell suspension into the print reservoir. It was 
established from initial work by other research groups[32] and 
our experimentation that fibroblasts could be printed for up to 40 
minutes without significant loss of cell number. 

1 mL of fibroblasts were seeded at 40,000 cells/mL 
into each well, and topped off with 2 mL of cell media, before 
being stored in an incubator. The samples were experimented in 
triplicate, with light and confocal images taken on day 1, 2 and 
3. Confocal images were stained with FITC-phalloidin and 
DAPI, with the aim to determine cell viability of these scaffolds.  

For confocal fluorescence imaging, cells were seeded 
on the scaffolds at 2x104 cells per sample, stained with 
phalloidin-fluorescein isothiocyanate (FITC) for F-actin 
filaments and 4’,6-diamidino-2-phenylindole dihydrochloride 
(DAPI) for nuclear staining. 

Samples were fixed with 3.7% formaldehyde in PBS 
for 30 minutes at room temperature and permeabilised with 
0.1% (v/v) Triton X-100 in PBS for 30 minutes. Phalloidin:FITC 
was added at 1:1000 in PBS in combination with DAPI at 
1:1000 (300 nM) for 30 minutes, washed and stored in PBS at 
4°C until imaging. Cells were washed with PBS (x3) for 5 
minutes between each step. 

Samples were imaged using an inverted Zeiss LSM 
510 META confocal microscope, using an argon 30 mW ion 
laser (488 nm) for FITC excitation λex = 495 nm / λem = 521 
nm. Nuclei were visualized by two photon excitation using a 
Chameleon Ti-Sapphire tuneable laser for DAPI excitation λex 

400 nm; λem = 460 nm.   
Image acquisition and analysis were carried out with 

Carl Zeiss Laser Scanning Systems LSM 510 software. 
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