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Abstract

In this study we present a novel approach using
dimensionless numbers that allows for the prediction of ring-like
structures in drying ink drops based on binary solvent mixtures
by substance data. Mechanisms considered in this approach are
suppression of Marangoni-flows due to fast evaporation times as
well as the potential strength of Marangoni-flows. The proposed
approach is validated experimentally. Single spots based on
various  solvent  compositions are inkjet-printed — and
characterized with respect to the structure by means of
microscopy.

Introduction

Inkjet printing as manufacturing process for functional
structures is subject of research since the end of the 1980°s [1].
Fabricating components, inkjet printing is appropriate for a
variety of applications, e.g. passive electronic components,
LEDs, RFID transponders, sensors or applications in
biotechnology [2], [3].

The functional material is dispersed in a carrier fluid in the
form of nano particles. In general, particle loaded inks based on
organic solvents are applied in functional inkjet printing. While
drying on a non-absorbing substrate, a particle loaded droplet is
subject to fluid mechanical effects. These effects arise from the
evaporation and the surface tension of the solvent as well as
from the interaction between ink and substrate.

With respect to the coffee-ring-effect (CRE), a flow
develops in the drying droplet; particles are carried towards the
edge. As a result, particles are distributed inhomogeneously on
the substrate. The governing mechanisms were first described by
Deegan et. al. in 1997 [4]. Furthermore, temperature and
concentration gradients can initiate a Marangoni-flow in the
drying droplet [5]. If both effects appear at the same time, flows
are superposed and a complex flow behavior occurs. Under
certain conditions, the inhomogeneous distribution of particles
due to CRE can be compensated by Marangoni-flow [6].

To investigate the stated effects experimentally, the drying
process of particle loaded droplets can be observed by high
speed cameras. Numerous studies examine single mechanisms
regarding the stated phenomena, e.g. [7], [8], [9].

At the Institute of Automation Technology, the formulation
of functional inkjet inks as well as applications of functional
inkjet printing are researched since 2004. Within the project
“Inkjet-printing of photo electrochemical cells”, photo active
electrodes are structured by CRE in order to increase the free
surface for better light capture.

Experimental

The impact of the drying behavior on the structure of
inkjet-printed spots is observed. The evaporation of inkjet carrier
fluids can be observed with high speed cameras. In this study,
we desist from tracing the whole evaporation process. Instead,
the distribution of the nano particles on the substrate after
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complete drying of the printed spots is investigated. Three series
of experiments are performed, the examined binary mixtures are
listed in table 1.

Table 1. Investigated binary solvent mixtures, compositions and substrate
temperatures

First, the impact of substrate temperature on the resulting
structure is investigated (series 1). For this purpose, single spots
are inkjet-printed with a mono dispenser (MDK-K-140,
Microdrop GmbH) on glass substrates (Solaronix SA) at selected
temperatures. The temperature at the substrate surface is
monitored with a thermometer (80TK thermocouple, Fluke Co.)
and is 40, 60 and 80+5 °C. The printed spots are examined by

series  mixture composition  substrate temperature

wt.-% “C
1 BC/DMAc 70:30 40
1 BC/DMAc 70:30 60
1 BC/DMAc 70:30 80
2 BC/DMAc 90:10 60
2 BC/DMAc 70:30 60
3 BC/DEG 50:50 80
3 BC/DEG 70:30 80
3 BC/BUG 50:50 80
3 BC/ISO 50:50 80
3 BC/DMAc 70:30 80
3 BC/DMAc 90:10 80
3 BC/PEN 50:50 80
3 BC 100 80
3 PEN/ISO 50:50 80
3 PEN/EG 50:50 80

means of digital microscopy (VHX-S15 microscope, Keyence
Co.). In addition to microscope photographs, half profiles of the
printed spots are prepared from three-dimensional microscope
images. These are generated from a series of single microscope
images. The binary solvent mixture consists of 70 wt.-% butyl
dyglycol (BC) and 30 wt.-% dimethyl acetamid (DMAc). Solids
content is 5 wt.-%, TiO, particles with a mean diameter of 20
nm are used. The fraction of stabilizing additive ethylcellulose
(Dow Chemical Co.) is 2 wt.-%.

With the same experimental setup, the impact of the ink
composition is investigated (series 2). Inks based on mixtures of
BC and DMACc are printed, the fraction of the latter is 10 and 30
wt.-%. Temperature of the substrate in this series is kept
constant at 60 °C. Solids and additive contents are the same as
before.

Validating the theoretical approach, further inkjet inks
based on binary solvent mixtures are inkjet-printed (series 3).
The substrate temperature for all printed inks here is 80 °C, the
solid substance content is 5 wt.-% TiO, particles with mean
diameter of 20 nm. The solvents here are butyl diglycol (BC),
diethylene glycol (DEG), butyl glycol (BUG), isopropanol
(ISO), dimethyl acetamid (DMAc), 1,5, pentandiol (PEN) and
ethylene glycol (EG).

© 2016 Society for Imaging Science and Technology



Modeling

The basic notion of the proposed approach is to use
dimensionless numbers that are representative for the behavior
of the drying spot with respect to the formation of ring-like
structures.

The first physical value applied here is the vapor pressure.
The vapor pressure of binary mixtures possesses two values, one
value for the fluid phase and one value for the vapor phase
respectively. In order to obtain a value that allows for a
comparison of the different compositions, a combined value
Pmixwre 18 calculated from the substance data of the pure
components assuming a linear relation between the two
components:

Pmixture = C1P1+02P2- (1)

Here, ¢, and ¢, are the fractions of the two components with
respect to the mass; p; and p, are the vapor pressures of the two
components. For the following observations, the vapor pressure
is normalized and rendered dimensionless by refering it to the
pressure at standard conditions py= 100 kPa:

p*mixture = pmixture/p0~ (2)

For comparison of the potential strength of the Marangoni-
flow, the Marangoni-numbers with respect to thermally driven
flow Mat and with respect to concentration driven flow Mac are
used. These dimensionless numbers are commonly used in the
field of fluid mechanicas to describe the strength of Marangoni-
flows and can be written as follows [10], [11]:

Mar = (05/0T)(LAT)/(n1a)), 3

Mac = (60/0)(L*)/(79)), “4)
with

a = Mcyp). (5)

Here, AT is the effective temperature difference, L a
characteristic length, # the viscosity, a the thermal diffusity, 4
the heat conductivity, c, the heat capacity, p the density, 0o/0T
the change of surface tension with respect to the temperature,
0o/0z the change of surface tension with respect to the location
and 0 the coefficient of diffusion.

The evaporation of fluids on heated substrates is a strongly
dynamic process. The temperature and the composition in the
drying spot changes with time and is strongly dependent on the
location, whereupon the physical values in the equations stated
above are dependent on the temperature and the composition of
the mixture. The proposed approach neglects the change of
physical data during the drying process. Instead, it uses the
substance data valid directly after the impact of the droplet on
the substrate instead to predict the formation of ring-like
structures.

It is assumed that a very short time after impact, the solvent
component 1 with the higher vapor pressure has already totally
evaporated at the bottom of the spot very close to the substrate.
Hence, in this area ¢; = 0 and o = o, apply. The temperature in
this area is assumed to be substrate temperature due to strong
heat convection at the solid-fluid interface. All substance data is
assumed to still have the initial values at the considered moment
directly after impact. These initial values depend on the
temperature of the impacting droplet which is assumed to be 20
°C and the initial composition according to table 1.
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The values for the physical data of binary mixtures used in
equations 3 and 4 depend on the composition of the mixture.
They are calculated assuming that resulting values depend linear
on the composition. So any substance data X, Of the binary
mixture is assumed to be

)(mixturc = Cl)(l + CZXZ (6)

with the substance data of the pure compounds X; and X.
The most substance data for pure components are taken from
literature. The values for heat conductivity and heat capacity of
pure substances as well as the coefficient of diffusion for the
mixture are calculated with quantitative equations according to
[12], which allow for aproximately calculating substance data
from chemical formula of the substance. The change of surface
tension with respect to the temperature 0o/07T can be calculated
from Eo6tvos rule [13], [14]. For the characteristic length L, the
geodetic distance from the substrate to the center of the spot is
chosen. This length can be calculated from the contact angle of
the spot on the substrate. Values for the latter were measured
and will be published in [15]. By this definition, a significant
value for the change of surface tension along the surface can be
calculated for the mixture by assuming a linear correlation:

00/62 =(Guisure- T/L, %

where 05 is the component with the lower vapor pressure.

The influence of the solids content on the substance data is
neglected, because the value of 5 wt.-% is low and kept constant
for all investigated mixtures. The influence of the stabilizing
additive is considered to be low and also neglected.

It is assumed, that the forming of ring-like structures in
binary solvent mixtures can be predicted by evaporation time
and the potential strength of Marangoni-flow. For this purpose,
the potential strength of Marangoni-flow is plotted against
evaporation time. The resulting diagram is divided into three

regions. This can be seen in figure 1.
Figure 1. Regions with respect to occurrence of ring-like structures
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In literature it is shown, that Marangoni-flows are often
suppressed at fast evaporation times, because any particle
transport due to Marangoni-flow would take more time than
evaporation [16]. Hence, in region I it is expected that a distinct
ring-like structure appears. If the evaporation is slow, a
Marangni-flow can occur. It is assumed, that the possibility for a
ring-like structure rises with decreasing potential strength of the
Marangoni-flow. Hence, in region III a ring-like structure is also
expected. In region II it is expected to have no or weaker ring-
like structures due to increasing strength of superposed
Marangoni-flow.

Furthermore, it is assumed that evaporation time correlates
with the normalized vapor as pressure stated above and the
potential strength of Marangoni-flow correlates with the
Marangoni-numbers.
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Results and Discussion

Temperature and concentration dependence
In figure 2, microscopy images as well as half profiles of
the printed spots of series 1 are shown.
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Figure 2. Microscopic images and half profiles of inkjet-printed spots based
on BC/DMAc 70:30; substrate temperatures 40, 60, and 80 °C.

In the images of all three spots steps in the color gradients
are clearly visible. The darker color at the edge indicates an
accumulation of particles at the edge due to CRE. This becomes
apparent in the half profiles as well, with increasing temperature
a ring-like distribution of particles can be observed at low
intensity at 40 °C and at strong intensity at 60 and 80 °C.

The ink used here generally fulfills the condition for
occurance of CRE according to [4]. A possible explanation for
the behavior with respect to the more distinct ring-structure at
elevated temperatures can be found in a Marangoni-flow. A
Marangini-flow can be developed here due to the temperature
difference between substrate and ambient air and due to a
concentration gradient. However, as stated above, the possible
strength of such a CRE-counteracting Marangoni flow is higher
at slow evaporation times, which seems to be the case at the
lowest substrate temperature considered in this experiment. The
formation of a distinct ring-like structure due to CRE is therefore
notably hindered by a Marangoni flow only at 40 °C here. So the
leveled substrate temperature might be an explanation for the
observed behavior.

The diameter of the spots tends to decrease with increasing
substrate temperature. This probably results from the increased
ratio of the evaporation time with free contact line and the total
evaporation time, which can lead to smaller diameters.

In figure 3, microscopy images as well as half profiles of
the printed spots of series 2 are shown.
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Figure 3. Microscopic images and half profiles of inkjet-printed spots based
on BC/DMAc at a substrate temperature of 60 °C; compositions 10 and
30 wt.-% DMAc.

Again, steps in the color gradient are visible in both images,
whereat the half profiles indicate a more distinct ring-like
structure for the 30 wt.-% DMAc mixture. As described above,
the supression of a Marangoni-flow at leveled evaporation times
can be used as explanation for the increased accumulation of
particles in the right figure. Here, the vapor pressure of the
mixture rises significantly due to the higher content of DMAc
and hence the evaporation time is shorter. The smaller spot
diameter as well as the smaller area of the profile result from the
change of evaporation characteristic due to higher vapor
pressure as well as from a change of droplet volume due to
changed viscosity und subsequently adapted driving voltage in
the printing process.

Verification of the proposed approach

First, the printed spots of the tested mixtures of series 3 are
classified in three groups according to the microscope images
and half profiles: strong CRE, weak CRE and no CRE.
Afterwards, the dimensionless numbers according to the
equations stated above are calculated for each tested mixture.
Table 2 shows the results for the classification of the printed
spots, for the calculation of the normalized vapor pressure as
well as for the calculation of the Marangoni-number with respect
to concentration-driven flows.

Table 2. Results of the classification of tested mixtures, of the calculation of
the Normalized vapor pressure and of the Marangoni-number with respect
to concentration-driven flow.

mixture CRE 1"mi1\um L n ] do/dz Mag
1077 mm mPas 107 12m?/s N/m? 108
BC/DEG 50:50 none 0,023 0,101 21,2 349 69.0 95,5
BC/DEG 70:30 weak 0,022 0.115 15,3 349 36.6 89,8
BC/BUG 50:50 none 0,595 0.135 4,75 367 14,8 154
BC/SO 50:50 strong 215 0,135 4,20 508 334 241,5
BC/DMAc 70:30  strong 1,004 0,114 4,82 400 10,5 7.2
BC/DMAc 90:10  weak 0,348 0,128 5,95 400 3,12 21.5
BC/PEN 50:50 none 0,015 0,101 58,2 14,0 64.3 804
BC* strong 0,020 0,135 6,50 - a -
PEN/ISO 50:50 strong 21,5 0,101 55,9 28,3 108.9 700
PEN/EG 50:50 strong 0,040 0,067 65,5 22,9 370 112

The microscope pictures and half profiles for the spots
examined in series 3 will be published in [15]. The ink based on
pure BC is examined in order to compare the carrier fluids based
on mixtures with carrier fluids based on pure substances. A
value for Mac cannot be calculated because there is no
coefficient of diffusion and the change of surface tension with
respect to the location becomes zero. Table 3 shows the
calculation of the Marangoni-number with respect to thermally
driven flows.
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Table 3. Results of the calculation of the Marangoni-number with respect to
thermal-driven flow.

mixture L n P cp A AT do/0T Mar
mm mPas  keg/m® J/(kgK) W/(mK) K N/ (mK) -
BC/DEG 50:50 0.101 21,2 1035 2225 0,153 60 94.3 406
BC/DEG 70:30 0.115 153 1002 2175 0,153 60 86.6 542
BC/BUG 50:50 0.135 4,75 927 2207 0,158 60 73.2 1614
BC/ISO 50:50 0.135 4,20 866 2318 0,162 60 86.3 2061
BC/DMAc 70:30 0,114 4,82 949 1920 0,156 60 882 1467
BC/DMAc 90:10 0,128 5,95 952 2040 0,159 60 79.5 1252
BC/PEN 50:50 0.101 58,2 976 2200 0,153 60 86.6 126
BC 0.135 6,50 953 2100 0,161 60 75.2 1162
PEN/ISO 50:50 0.101 55.9 889 2418 0.154 60 97.8 148
PEN/EG 50:50 0,067 65,5 1056 2341 0,150 60 u7 119

The calculated values shown in table 2 and table 3 are
plotted in a diagram as introduced in figure 1. As dimensionless
value for potential strenght of Marangoni-flow the product of
Mar and Mac is considered. This value is charged on the axis of
ordinate in the diagram. The Mac -value for the purely BC-based
ink is set to 1.

Temperature is 80 °C in all experiments. Hence, the main
impact on evaporation here is expected to arise from the vapor
pressure. As the evaporation time decreases with increasing
vapor pressure, the reciprocal value of p* ivwres 1/P* mixtures 15
charged on the axis of abscissae in the diagram. The diagram is

shown in figure 4.
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Figure 4. Coffee-ring-effect at binary solvent mixtures in dependence of the
vapor pressure and the potential strength of Marangoni-flow on glass
substrate at a substrate temperature of 80 °C; dashed line: borders of
predicted regions

Logarithmic scaling is chosen for both axes in order to
accommodate the rather large range of values. It is attempted to
draw the borders of the three regions according to figure 1. One
finds, that for normalized vapor pressures greater than 0.001 a
strongly developed ring-like structure is observed due to fast
evaporation. For values greater than 13-10" no ring-like structure
is observed due to strong Marangoni-flow. For inks containing
higher amounts of solids and additives than the inks considered
in this study, the impacts of solids and additives on the physical
values have to be considered for the calculation of the
dimensionles numbers

Conclusions

We investigate the forming of ring-like structures in drying
ink drops based on binary solvent mixtures and low solid
contents. First, we show the general behavior with respect to
temperature and composition of selected inks based on materials
chosen in this study by means of microscope photographs and
three-dimensional microscope images.

Subsequently, a novel appoach for predicting the occurance
of ring-like structures is proposed. The approach is based on
dimensionless numbers which can represent the general drying
behavior. The dimensionless numbers are calculated from
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substance data that are valid for the moment directly after the
impact of the droplet on the substrate. The first considered
mechanism is the forming of ring-like structures due to fast
evaporation and supression of Marangoni-flow. This mechanism
is covered by a normalized vapor pressure. The second
considered mechanism is the potential strength of the thermal-
driven and the concentration-driven Marangoni-flows. This is
covered by the product of the Marangoni-number with respect to
thermal driven flows and with respect to concentration driven
flows.

Experiments are performed in order to test the proposed
approach. By means of microscopy, the occurance of ring-like
structures for a set of inkjet inks is observed and classified using
three categories. For the examined inks, the dimensionsless
numbers are calculated and plotted according to the proposed
approach. The results show, that the behavior can be predicted
using the proposed approach within certain restrictions. The
limits of the predicted regions are identified and validated for the
specific glass substrate and substrate temperature 80 °C used in
this study.
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