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Abstract 
Regenerated silk fibroin (RSF) protein is an FDA approved 

biomaterial and has been used as a bio-ink to fabricate 
structures using inkjet printing. Silk can be present in water 
soluble amorphous (Silk I) and water insoluble crystalline 
conformations (Silk II) made up of beta-sheet structures. Here 
we show the generation of silk scaffolds by inkjet printing of 
water soluble RSF inks and then converting them into insoluble 
beta-sheet (Silk II) structure via a second ink containing 
methanol. This paper focuses on optimising printing conditions 
of RSF bio-ink through establishing the relationships between 
RSF peptide concentrations, number of layers and the total 
thickness of the printed layers. Various patterns such as dot 
arrays, lines, films, particles and logos have successfully been 
fabricated. The emerging of inkjet printing of RSF ink allows us 
to print delicate silk scaffold patterns for different applications 
specifically in biomedical field. 

Introduction 
The increasing morbidity and the limited supply of donors 

require tissue engineering (TE) as a treatment of organ 
failures.[1] The TE method involves regenerating tissues within 
suitable scaffolds with the aim of transplanting the artificial 
structured tissues to the target site. These constructed scaffolds 
require high biocompatibility, tailorable biodegradability and 
good mechanical properties. Materials like metals, polymers, 
and ceramics, are widely used to fabricate these scaffolds.[2] 
Among these materials, a natural biomaterial, regenerated silk 
fibroin (RSF), is of interest because of its water-based 
preparation process and remarkable properties such as good 
biocompatibility, tailorable biodegradability and good 
mechanical properties.[3-6]  

With the development of novel approaches for biomaterial 
fabrication, TE scaffolds are more convenient to be built up than 
before. In the past three decades, electrospinning was used to 
fabricate fibrous TE scaffolds.[7] However, electrospinning has 
a number of fundamental problems remaining unsolved, such as 
the suitable viscosity of the solution for spinning process still 
cannot be controlled.[7] Nowadays, inkjet printing has emerged 
as the most attractive direct patterning technique for versatile 
designs. It is convenient to fabricate tissue scaffolds as it is fully 
digitally driven with a computer.[8]  

Using Bombyx mori (B. mori) silk as the base biomaterials, 
an RSF aqueous solution was developed and used as an ink for 
inkjet printing. The key ink property is its ability to form single 
droplets. Generally, the most important physical properties to 
take into account when determining the printability of an ink are 
density (ρ), surface tension (γ), viscosity (η) and nozzle diameter 
(d).[9-12] According to the Navier-Stokes equation, these 
physical properties can be used to evaluate the inertial force, 
capillary force and viscous force for forming stable droplet by a 
number of dimensionless groupings of physical constants.[10, 13] 
The most useful constants are the Reynolds (Re), Weber (We) 
and inverse (Z) of Ohnesorge (Oh) numbers: 

Re = (ν ρ D) / η                                           (1) 

We = (ν^2 ρ D) / γ                                                                     (2) 

Z = 1 / Oh = Re / We1/2 = (γ ρ D) 1/2 /η                                     (3) 
The earliest important work trying to understand the 

mechanisms of drop generation was reported by Fromm who 
identified the Oh and proposed that Z ＞  2 for stable drop 
generation.[9] Then, Reis and Derby refined Z of the printable 
solution to be in the range of 1 to 10. [10]  When Z is too low, 
viscous forces are dominant, which requires large pressure for 
ejection; contrary, if Z is too high a continuous column is 
ejected that can result in satellite droplets forming alongside the 
main drop. Later, Jang et al.[11] redefined the printable range as 
14 ≥ Z ≥ 4 by considering characteristics such as position 
accuracy, maximum allowable jetting frequency, and single-
drop formability. Jang et al. recognized that the lower limitation 
of Z is controlled by the dissipation of the pressure pulse by 
fluid viscosity, and the upper limit of Z is governed by the point 
at where a satellite forms instead of a single droplet. 

However, several groups reported stable inkjet printing 
even for 4 ＞ Z ＞ 1 and Z ＜ 14. Liu et al. [12]  illustrated that 
Z ＞ 14 ink can produce single droplet with a double waveform 
by adding extra negative pressure to avoiding satellite droplets.  

This paper focuses on demonstrating the printability of the 
RSF inks and optimizing printing conditions of RSF bio-ink 
through establishing the relationships between RSF peptide 
concentrations, number of layers and the total thickness of the 
printed scaffolds. Various patterns such as dot arrays, lines, 
films, particles and complex logos, for example ‘SHEFFIELD 
ENGINEERING’, have successfully been fabricated. In the 
future, these inks can be formulated by adding other components 
such as growth factors, enzymes, particles, and other functional 
materials to fabricate various tissue engineering scaffolds that 
can meet different requirements of the end uses.[14-17] 

Materials and Methods 
The preparation of RSF inks is a water-based process 

(Figure 1). In this research, the Ajisawa’s method (this method 
used Ajisawa’s reagent to dissolve silk fibroin. A reagent mixed 
of CaCl2 / Ethanol / Water = 1:2:8 molar ratios) was used to 
dissolve silk fibroin. [18] Briefly, silk from B. mori was 
degummed in order to remove sericin. Raw silk was added in 
0.02 M boiling sodium Carbonate (Na2CO3) solution for 30 
minutes. Then, the resulting silk materials were rinsed with 
deionized (DI) water until the solution was looked clear and 
dried in drying cabinet at 40  overnight. 2 g of the degummed 
fibroin was dissolved in 10 ml of the Ajisawa’s reagent at 75  
for 3 hours under mild stirring. The resulting RSF solution was 
allowed to cool down and dialysed in DI water for 
approximately 3 days in 12-14 kDa molecular weight cut off 
dialysis tubing at room temperature (22 ℃) to remove the salts. 
Dialysis water was changed until the electric conductivity of the 
dialysis solution was in close proximity to the electric 
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conductivity of DI water. The dialysed RSF solution was then 
centrifuged at 10000 rpm for 15 minutes. The supernatant 
solution was collected for printing as bio-ink (Figure 1).  
 
 
 
 
 
 
 
 
 
Figure 1. Preparation of RSF solution contains three main steps which are 

degumming, dissolving and dialysis. 

The rheological properties of the RSF inks can be tuned 
within the range of γ from 40 to 75 mN/m, and between 1 and 
300 mPa·s for viscosity at 21℃ by adjusting the concentration 
of RSF solution.  

A drop-on-demand (DOD) inkjet printer (MicroFab IV, 
MicroFab Inc., USA) was used to conduct the printing works 
and a 60 μm diameter piezoelectric print head (MicroFab Inc., 
USA) was selected for this experiment.  

Results and Discussion 
Table 1 lists the physical properties of a series of different 

concentration of RSF solutions. The Z values of the 10, 20, 30 
and 40 mg/ml RSF solutions are 40.9, 32.1, 25.3 and 20.3 
respectively.   It is worth noting that the Z values of all the inks 
are above 14, which mean that they require extra pressure to 
form stable single droplets.[12] These inks were then loaded into 
the printer vessel. Figure 2 shows charge-coupled device (CCD) 
camera caught droplets ejection images which experimental 
observation of droplet formation for (a) 10 mg/ml, (b) 20 mg/ml, 
(c) 30 mg/ml and (d) 40 mg/ml of RSF inks. It can be seen from 
the images that single droplets were formed, with higher 
concentration forming better droplets due to the lower Z value. 

Table 1. Physical properties of RSF inks   

RSF inks 
(mg/ml) 

0 
H2O 

10 20 30 40 

ρ (Kg/m3) 1000 1010 1020 1030 1040 
η (mPa·s) 1.08  1.29  1.63  2.08  2.6  
γ (mN/m) 72.9  45.96 44.76  44.65 44.73 
Inverse (Z) 
of Oh 

61.2 40.9 32.1 25.3 20.3 

ρ - density; η – viscosity; γ- Surface tension;  
droplet diameter is 60 µm. 

Images of optical profiler microscope (Contour GT-K, 
USA) in Figure 3 show the morphology of 10, 20, 30 and 40 
mg/ml of RSF solution printed dots. The ring structures come 
from the coffee-ring effect which is a result of a complex 
balance between outward micro-flow distribution, solution 
impact and different evaporation rates between the center and 
the edge of the deposited materials.[19, 20] The thickness (400 
±65 nm) of the edge of coffee-ring structure is higher than the 
thickness (100 ±30 nm) of the center area (Figure 3).  

Figure 3 also shows that the higher concentration of RSF 
inks form smaller rings than the lower concentration of RSF inks. 
Therefore, the diameter of the ring pattern can be controlled by 
adjusting the concentration of the RSF inks (Figure 3e); as 
concentration increase diameter decrease.  

 
 
 
 
 
 
 
 
 
 
 
Figure 2. These CCD camera microscope images, depicting silk droplets 

ejected from 60 μm nozzles, shows the formation of a single droplets from 

different concentration of RSF solutions, (a), 10 mg/ml (Z = 40.9), (b), 20 

mg/ml (Z = 32.1), (c), 30 mg/ml (Z = 25.3) and (d), 40 mg/ml (Z = 20.3) 

respectively. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3. Optical profiler microscope images show different concentrations 

of RSF solution printed dots. The concentrations are (a), 10 mg/ml, (b), 20 

mg/ml, (c), 30 mg/ml and (d), 40 mg/ml respectively. e) Graph shows the 

diameter of the different concentrations of RSF solution printed dots. 

The choice of RSF as the main component for inkjet 
printing ink was not only due to its excellent biocompatibility 
and biodegradability[3, 4] but also due to the quick conversion 
of their polymorphic structure by exposing to organic solvent, 
which triggers the water soluble amorphous (Silk I) into water 
insoluble crystalline conformations (Silk II) made up of beta-
sheet structures.[3] It is possible to generate silk scaffolds by 
inkjet printing of water soluble RSF inks and then convert it into 
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insoluble beta-sheet (Silk II) structure via a second ink 
containing methanol.  

Changes in the structure of printed RSF films were 
determined by Fourier Transform Infrared (FTIR) 
Spectrophotometer (IRPrestige-21, Shimadzu, Japan). The 
infrared (IR) spectral region between 1750  cm-1 and 1450 cm-1 
was classified to absorption by the peptide backbones of amide I 
(1700-1600 cm-1) and amide II (1600-1500 cm-1), which were 
mostly used for the analysis of different secondary structures of 
RSF.[21, 22] As shown in Figure 4a, the peaks at 1661-1663 cm-

1, 1575-1777 cm-1, and 1525-1522 cm-1 were characteristic of 
silk II secondary structure, whereas the absorptions at 1672-
1669  cm-1and 1531- 1529 cm-1 were indicative of silk I 
conformation. After the printing of methanol, the peaks at 1670 
cm-1 and 1530 cm-1 (silk I) decreased, whereas the peaks at 1662 
cm-1 and 1524 cm-1 (silk II) increased. The results indicated that 
silk films with different amount of crystal structures were 
achieved by printing layers of methanol. 

Height of printed RSF pillar prepared from 10mg/ml RSF 
solution is illustrated in Figure 4b (1-10 layers), 4c (20-100 
layers), and 4d (200-1000 layers). Samples were prepared by 
printing one layer of RSF solution and followed by another layer 
of methanol. Evaporation of methanol leaves the silk pillars with 
beta-sheet conformation. The average thickness of each layer 
within 10 layers was 350 ± 50 nm, whereas that within 
1000layers was 210 ±60 nm. The difference of each layer 
height may be cause by the coffee ring effect which results in 
the height different between the edge and the center of the 
printed dots pattern. Above all, the more layers are printed, the 
higher pillars are built up. Methanol helps to form stable RSF 
structure which allows us to fabricate 3D scaffolds.   

  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4. (a) FTIR spectra shows silk I converting to silk II of printed RSF 

films after printing methanol. Thickness at edge of silk column with 

10mg/ml RSF solution with different numbers of layers: (b) 1-10 layers, (c) 

20-100 layers, (c) 200-1000 layers. 

In order to demonstrate the feasibility of fabricating 3 
dimensional (3D) scaffolds by inkjet printing, various patterns 
such as dot arrays, lines, films, particles and complex logos[6], 
for example ‘SHEFFIELD ENGINEERING’, have successfully 
been fabricated (Figure 5). Figure 5a shows a liquid droplet can 
form a line by controlling the printing distance of two adjacent 
dots. Large printing distance (0.20 mm) between each dot makes 
it hard for droplets to coalesce. Droplets start to connect with 

each other by decreasing the distance (0.13 mm). Initial 
coalescence of liquid droplets forms line with periodic 
irregularity edge (distance between 0.12-0.03 mm). Then, after 
sufficient overlap (0.025 mm) a parallel-side line occurs. But if 
the adjacent droplets are too close to each other (0.02 mm), a 
bulging forms. These findings are consistent with poly (3,4-
ethylenedioxythiophene) poly (styrene sulfonate) inks reported 
by Soltman et al.[20] Figure 5b shows alphabetical logo- 
‘SHEFFIELD ENGINEERING’. It demonstrates that the RSF 
inks can be used to print complex logo with high quality. Figure 
5c shows the printed pillar of ‘little light ball’ shape. It extends 
the application for inkjet printing of RSF from two dimensional 
to 3D direction.          

Furthermore, RSF inks can be used as a base ink and 
formulate functional inks by mixing enzymes, nanoparticles, 
growth factors, and other biomaterials. The application of the 
functional RSF inks for making silk micro-rockets (Reactive 
inkjet printing of biocompatible silk micro-rockets) will be 
presented in another section of this conference. 

 

 

 

 

 

 

 

 
Figure 5. Microscope images show various printed pattern. a) Lines are 

produced by adjusting the distance of two adjacent droplets (b) 

‘SHEFFIELD ENGINEERING’ logo (c) The printed pillar- ‘little light ball’ 

shape 

Conclusions 
To conclude, it has been demonstrated RSF solutions can 

be printed by inkjet printer. The printed features can be 
controlled by the concentration of the RSF solutions, adjusting 
the physical properties of RSF solutions, and post-treatment by 
the methanol. We also established the relationships between the 
number of layers and the total thickness of the printed scaffolds. 
Various patterns such as dot arrays, lines, films, particles and 
logos, have successfully been fabricated.  

The growth of bio-printing provides a compelling research 
and development tool, and silk fibroin could play an important 
role as an ink material that can be formulated by adding other 
components such as growth factors, enzymes, particles, and 
other functional materials to fabricate various TE scaffolds that 
can meet different requirements of the end uses. 
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