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Abstract 
The spatial quantization imparted by printed pixels 

becomes significant when printing finely detailed bitonal images 
such as data-bearing halftones. This paper explores the 
consequences non-integer scaling has on data recovery error 
from such data-bearing marks. We verify that different printer 
manufacturers use nearest-neighbor scaling, and conducted 
hundreds of print and mobile camera capture measurements to 
quantify data recovery errors as a function of printed pixel 
replication factor. We tested the effects of multiple payloads 
represented by several data-bearing images, printed on a variety 
of printers, and captured at different camera distances. The 
analog print–and-capture experiments are compared with 
digital simulations, using several error measures.  The results 
support a surprising conclusion:  there is no significant 
advantage in forcing printed pixel replication to be an integer. 

Introduction 
Embedding data in and recovering data from hardcopy are 

key steps in a variety of information-rich applications.  As the 
resolution and close-focus ability of mobile cameras increase, 
the marks for embedding data in hard copy continue to decrease 
in size.  Embedding schemes such as QR or data matrix codes 
involve represented symbols with relatively large binary squares, 
and are robust to scaling effects. Higher density solutions such 
as data-bearing halftones [1][2] can require more careful 
registration for accurate decoding.  In the case of stegatones [3], 
the focus of this paper, data is represented by single-pixel shifts 
of halftone clustered dots.  A convenient assumption that helps 
promote robust recovery of these designs is that a physical 
rendering from input pixels to device pixels must be scaled by an 
integer, such that single pixel perturbations translate cleanly into 
the rendered image space.   

There are, however, situations where this integer 
relationship cannot be guaranteed.  An important case is that 
when a document is prepared with a fixed size mark, but the 
printer is not yet known.  400 dpi data-bearing halftones have 
yielded a good blend of payload density and recoverability. 
While a document with such a mark will render beautifully on a 
1200dpi printer (with a replication factor of 3X), a potential 
problem arises with a 600dpi printer.  The printed pixel 
replication factor will be 1.5, meaning some input pixels are 
represented by 2x2 device pixels and some are represented by a 
single (1x1) pixel.  Changing the image size will also introduce 
non-integer replication factors.  For fine details, the effects of 
non-integer scaling can be significant, and in fact, a halftone 
strategy that attempts to create imagery suitable for a set of 
different scales has been proposed [4]. 

Consider the example of scaling a one-pixel wide line as 
shown in Figure 1(a) by a factor of 1.6.  Nearest-neighbor scaling 
will render the line as shown in (b).  The uniform input line is 
now composed of segments with 4 different shapes.  Bilinear 

scaling produces the gray scale version in (c) which is visually 
more uniform but cannot be rendered on most printers which are 
inherently bitonal.   

 
 
 
 
 
 
 

Figure 1. Scaling a one-pixel wide line by 1.6x. (a) Input, (b) Nearest-
neighbor scaling, (c) Bilinear scaling. 

The generation of a stegatone is illustrated in Figure 2. A 
continuous-tone input image (a) is halftoned (b) using a classical 
45-degree clustered-dot screen. A data payload in embedded by 
single-pixel shifting the halftone clusters to produce the 
stegatone in (c).  For this particular 200x200 pixel image the 
payload capacity is 1488 raw bits, with an error-corrected 
capacity of 376 bits.  Nearest-neighbor scaling the stegatone by 
a factor of 1.6 produces the binary image in (d).  A small area 
from the left side of the stegatone is enlarged in Figure 3.  A 
region form the input image is shown in (a) with uniform 2x2 
pixel clusters.  The 1.6x scaled version of the same area in (b) 
reveals clusters of size 3x3, 4x4, 3x4, and 4x3 pixels.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2. Stegatone generation and printing. (a) Gray scale input image, 
(b) Clustered-dot halftone, (c) Stegatone, and (d) Scaled by 1.6x when 
printed.  

(c) (b) (a) 

(a) (b) 

(c) 

(d) 
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While the impact of image scaling on quality assessment 
[5][6], watermarking [7], image matching [8] and QR code 
detection [9] schemes have been previously studied, the focus in 
most cases has been on digitally scaled images, as opposed to 
content scaled, (physically) rendered content captured with an 
imaging device.  The multiscale Viola-Jones object detection 
scheme was applied to a fast QR code detection problem and 
found to reveal encouraging results on actual (streamed) mobile 
imagery [9].  Compounding the problem, the art of scaling binary 
images for binary display [10][11] can be more challenging than 
when using continuous-tone images; efforts have often focused 
on the visual appearance rather than detectability, or 
recoverability. 

Though much research has been done analyzing the effects 
of scaling imagery on various functional measurements based on 
that imagery, the effects of up-scaling binary halftone-based data 
representations are less well understood.  How does this effect 
alignment and data recovery?  Do some replication factors, such 
as perfect integers, perform better than others?  How does 
capture resolution interact with printed pixel replication?  We 
address these questions in this work.  

 
 
 
 
 
 
 
 
 

Figure 3. Nearest-neighbor scaling of an array of 2x2 clusters by 1.6x. 

Assessing Printer Scaling 
To measure the data recovery error rates of a printed 

stegatone after upscaling by non-integer factors we used 4 laser 
printers of different manufactures, two with a resolution of 600 
dpi and two with a resolution of 1200 dpi.  We will anonymously 
identify the printers as A600, B600, C1200 and D1200.  To 
ascertain how scaling is performed on these printers we used the 
test pattern shown in Figure 4. It is 240x240 pixels where every 
row and every column has exactly one single-pixel wide black 
line segment.   We printed copies of this pattern scaled in small 
increments form 1.0 to 2.0 in the native resolution (600 or 1200 
dpi) on each of the 4 printers. This allowed us to observe exactly 
which rows and columns were pixel replicated.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4. Digital pattern to test nature of scaling.  

The results revealed that all four printers were indeed 
scaling by nearest-neighbor.  One scale factor that makes this 
effect clearly evident is 1.5x with scans of the resulting prints in 
Figure 5. The 1200 dpi prints are half the size of the 600 dpi 
prints, but are shown at the same size for the purpose of 
illustration.  A 1.5 scale factor will replicate every other pixel 
both horizontally and vertically. As every other line is doubled 
in thickness a resonant pattern is seen.  The patterns for the four 
printers are identical except for a one-pixel phase difference in 
the horizontal direction.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5. Results of scaling by 1.5x. Output from 4 different printers. 

As another example and evidence of nearest-neighbor 
scaling, the prints for scale factor 1.6 are shown in Figure 6. For 
this scale factor there are 8 output pixels for every 5 input pixels, 
so 3 lines are doubled for every 5 in the pattern. This effect is 
seen for all four printers with identical patterns, except for a one-
pixel phase shift in the vertical direction.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6. Results of scaling by 1.6x. Output from 4 different printers. 
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Error Rates from Mobile Capture 
Starting with the A600 printer, we printed a set of scaled 

versions of the “bird” stegatone from Figure 2(c).  In terms of 
the native 600 dpi resolution of the printer, we scaled the 
stegatone in terms of “printed pixel replication” factors. A 
printed pixel replication factor of 1.0 means there is a one-to-one 
relationship between input pixels and printed pixels. For this test 
we used printed pixel replication factors of 1.0 to 3.0 in steps of 
0.1. Each of these 21 printed scaled stegatone was then captured 
with a mobile phone camera using video mode at a mechanically 
fixed distance of 8.5 cm from the printed page. At this distance 
the capture sampling rate was measured to be 672 dpi.  A frame 
from the video was then processed using a recovery algorithm 
that aligns the image, then detects the shift of each halftone 
cluster to determine the raw data bits.  Those bits were compared 
to the original data bits, and the percent of incorrect bits were 
recorded as the “raw bit error rate percent”.   

This entire procedure was repeated for five versions of the 
same stegatone each with a different data payload.   The results 
of the measured raw bit error rates are plotted in Figure 7 for the 
5 payloads. On the top of the plot the x-axis is labeled with the 
“effective print resolution,” which represents the native print 
resolution, 600 dpi, scaled by the printed pixel replication factor.  
The average of the results from the stegatones with the 5 
payloads is shown as the red curve in Figure 8.  Also plotted in 
this figure is the average of the error correction coding (ECC) 
enhanced payload in blue, determined by using ECC applied to 
the payload to mitigate errors in the recovered raw bits.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 7. Raw bit error rate for printer A600, captured at 8.5 cm for 5 
different payloads. 

This entire process was then repeated with the mobile phone 
camera at two other distances:  11.5 cm and 14.3 cm.  These 
distances were chosen to correspond to measured video capture 
resolutions of 500 and 400 dpi, respectively.  The purpose of 
these changes was to observe if printed pixel replication factor, 
or equivalently effective print resolution, interacted in some 
periodic or otherwise notable way with capture resolution.  These 
results are shown in Figure 9. To our surprise capture resolution 
had no effect.  The shape of the curves were the same, with the 
expected slight increase in error as the capture distance 
increased.  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 8. Average raw bit error rate and ECC error rate for printer A600, 
captured at 8.5 cm. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 9. Average raw bit error rate for printer A600 across 5 payloads at 
video capture distances of 8.5, 11.5, and 14.3 cm.  

All of these procedures were then applied with the other 600 
dpi printer (B600).  To summarize, there are 21 printed pixel 
replication factors (or scales), 5 payloads, and 3 capture 
distances for another 315 experiments. Those results are plotted 
in Figure 10.  Like the A600 printer, it too showed high 
correlation between results obtained at different capture 
distances.  Both printers showed a sharp increase in error at 
printed pixel replication factor of 1.1.  However, at 1.5 printer 
A600 showed a clear decrease in error while printer B600 
showed an error increase.  

For the first 1200 dpi printer, C1200, we needed to adjust 
the range of the printed pixel replication factors, due to the 
following.  Because of the higher print resolution, we started at 
a pixel replication factor of 1.5, which has an effective print 
resolution of 800 dpi.  This resolution is already higher than our 
highest capture resolution of 672 dpi when the camera is 8.5 cm 
from the print.  For this printer we extend the printed pixel 
replication factors a bit further out to 6.0.  The results for the 
measured raw bit error rates are shown in Figure 11.   
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Figure 10. Average raw bit error rate for printer B600 across 5 payloads at 
video capture distances of 8.5, 11.5, and 14.3 cm. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 11. Average raw bit error rate for printer C1200 across 5 payloads 
at video capture distances of 8.5, 11.5, and 14.3 cm. 

The error rate above printed pixel replication factor of 4.0 
appears to reach steady state; for this reason there is no need for 
further testing above that factor.  Accordingly, the range of 
printed pixel replication factors for the other 1200 dpi printer 
(D1200), was set from 1.5 to 4.0. Its results are shown in Figure 
12.  While both 1200 dpi printers show increased errors at the 
high effective print resolutions, they, like the 600 dpi printers, 
show no real preference for integer printed pixel replication 
factors, or any interaction with capture resolution.  

Another metric we measured was mean-squared error 
(MSE).   The reference is the unscaled bitonal stegatone.  This 
image is compared with the up-scaled version that is printed, 
video captured, tone-scale adjusted to cancel illumination 
effects, then down-scaled to the same digital size as the reference 
using a bilinear method. These measurements were applied to the 
captures using the A600 printer at the three distances and 5 
payloads, and plotted in Figure 13.   Comparing the shape of this 
plot to the data shown in Figure 9 reveals some differences.  The 
MSE shows more separation as capture distance increases, and a 
more steady decrease as printed pixel replication factor 

increases.   But again, there is no real preference for integer pixel 
replication factors over non-integer factors.   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 12. Average raw bit error rate for printer D1200 across 5 payloads 
at video capture distances of 8.5, 11.5, and 14.3 cm. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 13. Average mean square error for printer A600 across 5 payloads 
at video capture distances of 8.5, 11.5, and 14.3 cm. 

To analyze the effect of different stegatone source images, 
we included 3 additional images shown in Figure 14, two 
portraits with varying size dot clusters, and a short piece of 
(halftoned) text. Along with the original bird stegatone from 
Figure 2(b), we printed scaled versions of the four stegatones for 
each of 5 payloads and printed them on the A600 printer.  These 
images were all captured at 8.5 cm. The raw bit error rates are 
plotted in Figure 15. While all four images show similar 
performance, the “Stega” text image suffered higher errors at the 
lowest pixel replication factors; unlike the other prints, this 
design is dominated by shadow cells (the white dots surrounded 
by black) and printer dot gain makes them harder to locate.  

 The average raw error rate for all four images in Figure 15 
is plotted as the red curve in Figure 16.  It follows the shape of 
bird-only curve in Figure 9.  Figure 16 also shows the average 
ECC error in blue.  An additional metric is also plotted in that 
figure:  “Pixel error rate” is the percent of binary pixels that are 
different between the original source stegatone and a size-

389Printing for Fabrication 2016 (NIP32)



 

 

reduced version of the captured image.  Bilinear scaling is used 
to match the size of the captured image to the original image.  
The image is then binarized using an adaptive threshold 
according to [12].  The average pixel error rate is plotted in black 
in Figure 16.  Interestingly, it is more linear than the recovered 
bit error rate. 

 
 
 
 
 
 
 
 
 
 

Figure 14. Three additional stegatone images to test. (a) Portrait 1, (b) 
Portrait 2, and (c) The text “Stega”. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 15. Average raw bit error rate for 4 different source images for 
printer A600 across 5 payloads at a video capture distance of 8.5 cm. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 16. Average raw bit error rate, ECC error rate, and pixel error rate 
for 4 different source images for printer A600 across 5 payloads at a video 
capture distance of 8.5 cm. 

All-Digital Simulation 
To examine the analogue degradations due to printing and 

camera capture from another perspective, it is instructive to 
examine the effect of scaling by means of an all-digital 
simulation.  For this experiment we use bird stegatone from 
Figure 2(c) and scaled it to simulate a “digital printer”.  We used 
nearest-neighbor scaling to match what our four printers actually 
do.  Also, to simulate a printer that could print true continuous 
tone, we scaled the stegatone using a bilinear method.  For both 
cases the scaled input was used as the “captured” image and 
processed in the same way as we processed the camera captured 
versions of printed hard copy.  

The resulting raw bit error rate averaged over 10 different 
data payloads is plotted in Figure 17.  The red curve represents 
the result for scaling the input image using nearest-neighbor 
scaling, and the blue curve is the result for using bilinear scaling.  
The nearest-neighbor curve resembles the shape in Figure 9, but 
with a much lower amplitude (as we would expect for an all-
digital experiment).  The simulated bilinear scaled experiment 
resulted in very low raw bit error.  This is due to the fact that the 
recovery system detects clustered dot shifts by finding centroids 
of the captured gray scale blobs; bilinear scaled input will 
preserve the center position better than a hard binary threshold 
of pixels.  Somewhat surprisingly the bilinear error curve is 
nearly uniform across the range of pixel replication factors.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 17. Average raw bit error rate for the bird image with 10 different 
payloads for a digitally simulated printer that pixel replicates by nearest-
neighbor and bilinear scaling. 

We measured MSE in the same way in our digital 
simulations as was done in Figure 13. The results for both 
nearest-neighbor and bilinear scaling is shown in Figure 18. In 
this case bilinear scaling suffered generally higher MSE. While 
bilinear scaling preserves the center positions of dot clusters 
better than nearest-neighbor, it differs more on a pixel-by-pixel 
basis with the bitonal sources image. Finally, we measured pixel 
error using the process described for Figure 16, except the 
captured image is a digitally scaled image. The results are plotted 
in Figure 19.  These results are very similar to those for the 
simulated raw bit error but for different reasons.  Like MSE pixel 
error is a pixel-by pixel measure, however the adaptive 
binarization of the down-scaled image forces a more accurate 
match with the binary source image.   

 

(a) (b) 
(c) 
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Figure 18. Average MSE for the bird image with 10 different payloads for 
a digitally simulated printer that pixel replicates by nearest-neighbor and 
bilinear scaling. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 19. Average pixel error rate for the bird image with 10 different 
payloads for a digitally simulated printer that pixel replicates by nearest-
neighbor and bilinear scaling. 

Concluding Remarks 
This work revealed some surprises and validated some 

assumptions. Our measurements verified that among all the 
printers we tested, binary raster images are enlarged by nearest-
neighbor scaling. Our experiments showed that sampling 
resolution, determined by the distance the camera is from the 
print, does not alter the performance of recovery other than the 
expected uniform increase in error across pixel replication 
factors; there is no beat frequency effect between sample 
frequency and printed pixel frequency.  

In our all-digital experiments an advantage for perfect 
integer pixel replication factors was shown for MSE (Figure 18) 
and pixel error (Figure 19).  But, where it really matters, for 

alignment and data recovery the experiments indicate that there 
is no significant advantage in forcing printed pixel replication to 
be an integer.  This result represents a distinct advantage for the 
management of distributed rendering environments where the 
precise scale between document preparation and device 
resolutions cannot be controlled.   
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