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Abstract 
In recent days, green technology that is based on solar 

cell is highly focused for sustainable society. So, the efficiency 

of Si type of solar cell is drastically improved. On the other 

hand, dye-sensitized solar cell (DSC) is also highly focused 

because of flexibility and design in spite of low efficiency. To 

clear the low efficiency problem, many studies on the 

development of dye and titania were carried out. Because the 

dye was developed, then the absorbed wavelength became 

broad and the absorption ratio on each wavelength was 

increased. Due to the study on titania, unique shapes of titania 

were suggested and the absorption characteristics were 

improved. In spite that many studies on chemical view were 

carried out, few studies on fabrication process were carried out. 

So, we focused on fabrication of titania layer of DSC. Usually, 

the titania layer was fabricated by the doctor blade method or 

the screen print method. The inside of the fabricated titania 

layer utilizing the ordinary method had little porous. In the 

case that the porous titania layer was formed, then the flow of 

electricity was increased due to the increased surface of titania 

layer. We applied the electrostatic inkjet method for fabrication 

of the titania layer because the porous layer was formed due to 

evaporation effect utilizing the electrostatice inkjet method. We 

already formed porous titania layer and achieved the efficiency 

improvement. In this paper, we investigated the fundamental 

characteristics on fabrication of porous titania layer utilizing 

the evaporation effect. The experimental set-up to investigate 

the characteristics was shown as follows. Titania paste was 

filled with the ink tank. Nozzle was installed at the end of the 

tank. FTO glass electrode was set on the XY linear stage and 

the rotation stage. When the high voltage was applied between 

the nozzle and the glass electrode, small droplets were ejected 

because the electrostatic inkjet method was took place. 

Formation and ejection of the small droplets were observed 

with a high-speed camera and a light. The evaluation of the 

porous titania layer was carried out with the SEM and XRR. 

We investigated the characteristics of the porous titania layer 

in case that the rotation speed was changed. 

Introduction  
Solar power that is clearn and sustainable energy is highly 

expected. Si type of solar cell that is high efficiency dominates 

a market. However, the manufacturing cost is high. So, recently 

dye-sensitized solar cell (DSC) [1] that conservation efficiency is 

low is highly focused by many researchers to improve 

efficiency [2-8]. DSC does not require expensive materials and 

manufacturing apparatus. Large-scale DSC is fabricated 

utilizing the printing process. However, the conservation 

efficiency is low. So, many studies those are development on 

the DSC material, dye, titania, electrolyte are carried out to 

improve the efficiency. In spite that the titania thickness is 

important on the efficiency, a few studies on the process of 

titania printing [9,10] are carried out. The authors printed porous 

titania layer that efficiency was relatively higher utilizing 

electrostatic inkjet [11-15]. In this paper, the authors print titania 

layers those porous ratio is changed at each level. 

Mechanism of Nano Porous Titania Layer 
Fig. 1 shows the mechanism of nano porous titania layer 

utilizing electrostatic inkjet phenomena. Evaporation process of 

the electrostatic inkjet is applied for fabrication of nano porous 

titania layer. When the gap2, the distance between the plate 

electrode and the target, is large, then titania paste are hardly 

dried before the paste are attached on the target, and titania 

layer which has much nano porous will be formed. On the other 

hand, when the gap2 is small, wet titania paste are attached on 

the target, and mat titania layer will be formed. We already 

printed porous titania layer with the evaporation process. 

Because of the porous titania layer, the efficiency of the DSC is 

increased. However, the pore ratio of the titania layer is not 

optimized.  

 

 
(a) Large gap 

 

 
(b) Small gap 

Fig. 1 Evaporation mechanism utilizing electrostatic inkjet. 

Small particles are dispersed from the nozzle. When the gap is 

large, then the droplets are dried by the evaporation process. 

Experiment 
Fig. 2 shows the experimental set-up of the electrostatic 

inkjet. The detail of the titania paste is already reported in the 

former papers [9, 10]. The paste tank that tip has small nozzle is 

set above the plate electrode. When the high voltage is applied 

between the tank and the plate electrode, then the electrostatic 

inkjet phenomena is observed. FTO electrode with mask is set 

on the plate electrode. When the ring electrode is inserted 
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Fig. 2  Experimental set-up of electrostatic inkjet. (1: High 

voltage supply, 2: Ink tank filled with titania paste, 3: Plate 

electrode with a hole, 4: FTO plate electrode, 5: Plate electrode, 

6: Spin coater) 

 

 
Fig. 3  Photograph of experimental set-up. 

 

between the nozzle and the target, then the small droplets are 

dispersed from the nozzle because the electrostatic field around 

the nozzle is high. The gap1, the vertical distance between the 

nozzle and the ring electrode is positive, some dispersed 

droplets attaches on the edge of the ring electrode. So, gap1 is 

set as 0. The gap2, the vertical distance between the ring 

electrode and the target, is changed. In the case that the gap2 is 

small, the wet droplets are attached on the target and the 

attached area is normally distributed. When the spin coater is 

used, the normally distributed area will be flat because of the 

centrifugal force. The rotation speed is 1000 rpm. When the 

rotation speed is slow, the area is not flat because of weak 

centrifugal force. When the rotation speed is high, the attached 

titania paste is blown away. On the other hand, in the case that 

the gap2 is large, the dried titania particles by the evaporation 

effect are attached on the target and the attached area is 

relatively flat because of long distance for the ejected droplets. 

Results 
Fig. 4 and 5 show the overall photograph and cross-

sectional SEM photograph of the printed titania layer when the 

gap2 is changed. In the case that the gap2 is 10 mm, wet titania 

droplets are attached on the FTO electrode, and spread with the 

centrifugal force by the spin coater. After the spread, the titania 

paste is dried and the alligatoring is generated. Inside of the 

cross section of the titania layer is mat. On the other hand, in 

the case that the gap2 is over 30 mm, then the dried titania 

particles are attached on the FTO electrode. So, alligatoring is 

not observed and porous  

 

  
(a) gap2 is 10 mm                           (b) gap2 is 30 mm 

 

 
(c) gap2 is 50 mm 

Fig. 4  Overall photograph of the printed titania layer when the 

gap2 is changed. 

 

 
(a) gap2 is 10 mm 

 

 
(b) gap2 is 30 mm 
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(c) gap2 is 50 mm 

Fig. 5  Cross-sectional SEM photograph of the printed titania 

layer when the gap2 is changed. 

 

 
Fig. 6  Conversion efficiency of the DSCs those titania layer is 

printed in the case that the gap2 is changed. 

 

titania layer is formed. When the gap2 is further large, in this 

case 50 mm, then the titania paste is exsiccated and the surface 

of the printed titania layer is not smooth. Fig. 6 shows the 

conversion efficiency in the case that the gap2 is changed. The 

trend of the efficiency is changed, however basically the 

efficiency of the porous titania layer is high according to the 

former results [9, 10]. 

       Fig. 7 shows the titania layer when the printing condition is 

changed while printing. After the porous titania layer is printed, 

wet titania layer is printed over the porous titania layer. It is 

difficult to recognize the flat and mat titania layer on the porous 

titania layer because the attached wet titania droplets permeate  

 

 
(a)  Top layer: gap2 is 10 mm, bottom layer: gap2 is 30 mm 

 

 
(b)  Top layer: gap2 is 30 mm, bottom layer: gap2 is 10 mm 

Fig. 7  Printed titania layers those porous ratio is changed at 

each level.  

 

inside of the porous titania layer. However, we are able to print 

porous titania layer on the mat titania layer because the attached 

dried titania particles remains on the surface of the titania layer. 

Conclusion 
The authors printed porous titania layer utilizing 

electrostatic inkjet. The porous ratio is changed depended on 

the gap2. The authors print titania layers those porous ratio is 

changed at each level. These results are suitable for printing 

optimized titania layer. 
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