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Abstract

This paper demonstrates novel approaches to fabricate
micro-scale saddle coils via a combination of rolling-up of thin
polymer films [1, 2] and ink-jet printing technique. The printed
conductive patterns can be directly electroplated, allowing for
better conductivity and less signal loss for high frequency ap-
plications. To roll up 3D structures starting from 2D planar
patterns, two methods were investigated. The performance of
rolled-up coils were tested in a 500 MHz spectrometer and an
MR image of a water-filled capillary was successfully acquired.

Introduction

Nuclear Magnetic Resonance Imaging (MRI) has become
one of the most versatile non-invasive and non-destructive imag-
ing techniques by reason of no ionizing radiation being used dur-
ing a measurement. The information collected during MRI mea-
surements is created by picking out the induced signal of spin
magnetisation that is precessing in an external magnetic field.
One of the factors that limit the spread of NMR is the sensitivity
of the NMR probe, especially when dealing with low sample vol-
umes or small masses (ul or pg). It has been shown that the per-
formance and signal to noise ratio (SNR) of a probe can be signif-
icantly improved when its size is shrunk (diameters <1 mm) [3].
The relationship between SNR and the geometry of a solenoid
and saddle coil is given by equation (1) and (2) respectively [4],

Wyolenoid o 0-2910Vs/a (1)
‘Psaddle < 0-094#0%/(1 2)
where
W Signal to noise ratio available after a 90° RF pulse;
Ho: Vacuum permeability, 477 x 10~7H -m ™!
Vi: Sample volume in m3;
a: Coil radius in m.

It is clear from the equations that, in dealing with the same lim-
ited sample volume Vi, the sensitivity of a detector coil inversely
scales with its diameter. In addition, solenoid coils have better
sensitivity than saddle coils with similar dimensions (equations
1, 2). On the other hand, a saddle coil construction has the ad-
vantage of being operated in the parallel direction of the By, field,
thus causing less By field distortion, which makes it easier to
achieve high spectral resolution.

Unlike macroscopic NMR probe designs, many of the pop-
ular micro-coil designs are complicated and challenging to man-
ufacture, mainly due to the difficulties in handling conductive
structures at small dimensions [5, 6]. Therefore, planar coils and
solenoid coils are the more common forms used for designing
micro-coils [7]. While the manufacturing of solenoid coils can
be done by directly wrapping copper wire around a cylindrical
supporting structure [8], micro saddle coil construction still re-
mains a challenge to fabricate.
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Inkjet Printing

Beside its usage in graphical printing, inkjet printing has
grown into a mature technique for depositing functional materi-
als [9, 10], thanks to its flexibility and ability to precisely posi-
tion materials through computer control. It has also been adapted
to the field of printed electronics. Electronic components like
conductors, capacitors, and transistors, have been successfully
printed [11, 12]. Compared to conventional micro-fabrication
methods, printing is a more convenient and cost friendly alter-
native to fabricate micro-structures, for the reason that no masks
are required. In addition, drop-on-demand ensures that minimal
amounts of material are consumed, and barely any waste is gen-
erated. Given the available technology, the resolution of inkjet
printing is not as high as lithography techniques, due to the limi-
tation of possible droplet sizes. However, it has been proven that
this technique is more than sufficient to fabricate fine conductive
patterns and MR applications [13, 14, 15].

One of the limitations of directly inkjet printing conductive
patterns comes from the low sample volume deposited, which re-
sults in exceedingly thin metal layers. All the patterns reported
in this paper were printed using a commercial FUJIFILM Di-
matix DMP-2800 printer. The printer was equipped with an ink
cartridge, which ejects droplets with a volume of 10 pL (DMC-
11610, FUJIFILM Dimatix). The silver nanoparticle ink Sun-
tronic U5603 (metal load 20 wt %) was obtained from Sun
Chemicals. With a dot spacing setting of 25 um, a single inkjet
printed track line is around 50 pm wide and less than 500 nm
thick [16].

Skin Effect

Due to the insufficient thickness of the directly printed sil-
ver tracks, the structures have very high RF resistance, which
directly results in more noise during signal transfer. At low fre-
quencies, the charge carriers transport through the entire cross-
section of the conductor layer. By contrast, at high frequencies,
the charge carriers can only pass through small proportion of the
cross-section of the conductors, due to the radio-frequency skin
effect [17]. The effective resistance increases greatly compared
to when operated at low frequencies. The depth position at which
the current density drops to 1/e of the value at the surface of the
conductor, is defined as the skin depth dgp. The higher the work-
ing frequency is, the lower is the corresponding skin depth of a
given metal. The goal of our work is to built micro saddle coils
for an 11.7 Tesla NMR scanner, which has a working frequency
of 500 MHz for the 'H-channel. At 500 MHz, skin depths of
common non-magnetic metals are around a few ums (Table 1). It
is recommended that the thickness of the conductive layers is at
least 2 X 6gp. A further increase of the layer thickness will not
improve the conductivity significantly.

One direct approach to achieve thicker layers is through
multi-layer printing. Several layers of the same pattern will be
sequentially printed. However, this procedure is time consuming,
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especially for large patterns. The printing resolution also wors-
ens, caused by the spreading of the jetted ink. A better method is
to use the initially printed pattern as a seed layer for subsequent
electroplating. One obstacle to direct electroplating onto inkjet
printed patterns is the poor adhesion between the printed pattern
and the substrate material. It has been shown [15] that this prob-
lem could be solved by both controlling the sintering temperature
and the electroplating rate. The possibility to directly electroplate
the printed patterns helps to reduce the fabrication time greatly
and makes it easier to adapt the inkjet printing technique to high
frequency application designs.

Skin depth of common non-magnetic metals at 500 MHz.

Metal Skin Depth [um]  Desired layer thickness [pum]
Gold 3.37 6.74
Silver 2.83 5.67
Copper 2.92 5.83
Fabrication

In this paper we report on micro-saddle coil patterns man-
ufactured onto two types of transparent substrates: the stretch-
able Polydimethylsiloxane (PDMS) film (15 um), and the stiffer
25 um Kapton sheet (Dupont). Specifically designed 2D patterns
were first inkjet printed on top of the substrates and afterwards
carefully sintered at 200 °C to 250 °C to achieve minimal conduc-
tivity of the thin tracks (+ < 500 nm). Instead of printing multiple
layers, the samples were then electroplated with 5 um gold. Mi-
cro saddle coil structures were obtained by rolling the finished
planar patterns together with the underlying polymer film around
a glass capillary tube (@ 600 um), based on the rolling methods
described below.

Assisted rolling process for PDMS substrates
PDMS, also referred to as silicone, was used as one of sub-

strates because it is sufficiently flexible, optically clear, and non-

toxic. The detailed fabrication steps are depicted in Figure 1.

a. The process departed from coating the glass carrier slide
with a thin layer of Poly(4-vinylpyridine) (P4VP) (2 wt %
in chloroform solution), which serves as a sacrificial layer
and allows easy peeling of PDMS from the glass substrate.

b. 15um PDMS (Sylgard 184 silicone elastomer kit, 10:1
mixing ratio) was then dip-coated on top and cross-linked
by thermal treatment (80 °C for 1 hour).

c. After using O,—plasma to reduce the hydrophobicity of
the PDMS surface, a thin layer of chitosan (< 1 um, 1wt%
in DI water solution) was dip-coated to around 4/5 of the
substrate as an intermediate layer for printing. Part of the
PDMS film was left exposed for bonding with capillary
tube later.

d. After the sample dried up at room temperature, the bound-
ary area was carefully removed with a blade, to eliminate
the uneven regions generated during the dip-coating pro-
cess.

e. The prepared substrate was baked at 200 °C for 30 min,
in order to further improve the wetting behaviour of the
surface. The calculated coil pattern, including contact pads,
was then inkjet printed on the Dimatix, equipped with a
cartridge filled with Suntronic U5603 silver nanoparticle
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ink. To achieve printing at high resolution, all the printing
tests were carried out in a single nozzle jetting mode with a
25 um dot spacing setting (Figure 2 (a)). The width of the
line tracks was set to 100 um. Afterwards, the sample was
first dried at 100 °C and then sintered at 200 °C for 10 min,
which rendered the tracks conductive.

f. The electroplating was done in an industrial quality elec-
trolyte (K[Au(CN),]) bath, with a pH of 6.5. 5 um gold was
electroplated at a speed of around 5 um per hour (Figure 2
(b)). The residues were rinsed off in DI water for 30 min
prior to further experiments.

g. After drying the sample gently with a compressed air gun,
a glass capillary tube (© 600 um) was aligned and bonded
to the exposed PDMS area by covalent Si-O-Si bond for-
mation, after oxygen plasma treatment of the surface of the
PDMS substrate and the capillary tube.

f 1<— Dip-coating P4VP layer

(a) | e s
Glass carrier slide

(b) <«<— Dip-coating PDMS layer

(c) After PDMS hydro-
philization with plasma,
dip-coating Chitosan layer

Top View

(d)

Film at boundary area removed

(e) T Inkjet printed coil pattern

Electroplating 5 pm gold

—sscsscnna(

Plasma bonding capillary

sssssnssa )

(h) ] PAVP layer at the slit
L removed with Ethanol

The coil pattern rolled up
with assistance of an
| extra glass slide

Figure 1. Fabrication steps of the assisted rolling process based on PDMS
substrates. (a-d) Coating and preparing the multi-layer substrate. Figure (d)
is a top view. (e-f) Patterning with inkjet printing and electroplating. (g-i)
Fixation of the glass capillary and rolling up the coil pattern.
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h. The film behind the capillary was then carefully removed
with a blade. A few droplets of Ethanol was used to dis-
solve the P4VP layer at the slit opening. This extra step
improves the coherence of the peeling process along the
capillary.

i. Finally, an extra glass slide was placed on top of the tube,
which was then pressed and pushed forward at the same
time, while the substrate film was slowly peeled off from
the glass substrate. The rolled-up structure was fixed by
applying a thin strip of PDMS across the coil pattern and
crossed-linked at 80 °C for a few minutes (Figure 2 (c) (d)).
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(c) After rolling.

(d) MicroCT image of the coil.

Figure 2. 2D coil pattern deposited on top of a PDMS-Chitosan substrate.
(a) The printed pattern looks smooth on the thermal treated Chitosan sur-
face. The track width is 100 um. (b) After being sintered at 200°C, the ad-
hesion between the printed silver track and Chitosan layer is sufficient for
a direct electroplating process. (c) The rolled-up saddle coil exhibits great
optical clarity. (d) X-ray CT of the final rolled coil acquired on a Bruker 1172
system at 100 KeV.
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The finished coil remains on top of the glass slide and offers
great optical transparency to the coil volume. The supporting
glass capillary serves as an accommodation for the measurement
solutions as well. Connections to external circuit can be achieved
using conductive silver paste.

Assisted rolling process based on a Kapton sub-
strate

The other approach relies on commercially available 25 um
Kapton film (Dupont). Kapton, which is one class of polyimide,
is well known for its excellent mechanical and electrical proper-
ties. Even thin films are robust and exhibit very good chemical
resistance. It has been widely used for manufacturing flexible
printed circuit boards.

The as-received film was first cleaned with Acetone, Iso-
propanol, and DI water, always in an ultrasonic bath. The coil
pattern was inkjet printed using the same processing parame-
ters as discussed above for the PDMS-Chitosan substrate. The
printed sample was then sintered at 250 °C for 10 min. After
slicing into proper size, the sample was fixed onto a glass slide
with PET tape, which was then electroplated inside the gold elec-
troplating bath to a layer thickness of Sum. A rolling device,
developed in house by Dr. Harald Vogt [18], was used to assist
the rolling process of the Kapton sample. In the end, the rolled
up saddle coil was fixed with a small amount of transparent glue
(Der Alleskleber, UHU) (Figure 3).

Figure 3. A saddle-coil based on a Polyimide substrate rolled up around
a 600 um capillary tube. The coil is 1 mm long and connected to an external
circuit through contact pads (200 um x 200 um).

Measurement

The Kapton based micro saddle coil was fixed onto a printed
circuit board (PCB) and connected to the electrical tracks using
conductive silver paste. Afterwards, the setup was mounted onto
a custom-made sample holder, designed to fit onto a commer-
cial Bruker Micro 5 Probe base (Bruker). With a network an-
alyzer (Agilent, E5071B), the coil was tuned to 500 MHz and
matched to 50Q. The resonance was determined by measur-
ing the transmission loss (S1;), and the quality factor was eval-
uated from the width at the -3dB level of frequency response as
0 =2wy/Aw_34p [19], giving a quality factor Q = 23 (Figure
4).

The glass capillary with an inner diameter of 150 pm, which
accounts for less than 0.1pl of the coil’s inner volume, was
filled with DI water using capillary forces. An MR image with
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3mm x 3mm field of view (Figure 5) was successfully ac-
quired in an 11.7 T spectrometer (Bruker, Avance III) using a
600Gem— A1 gradient system (Bruker Micro 5).
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Figure 4. The reflection coefficient S, measured to be around -44.5 dB,
when the coil was tuned to 500 MHz and matched to 50 Q. The resonance
width at -3 dB was measured to be f_3.5 = 43.5 MHz, yielding Q = 23.

Figure 5.
of 20pum x 20 pm, slice thickness of 500 um, acquired in 4 min and 16 sec
with 20 averages using a gradient-echo sequence. Echo (TE) and repetition
times were set to 2.8 ms and 100 ms.

MRI of a DI-water-filled capillary with an in-plane resolution

Conclusion

Micro-saddle coil structures with diameters down to 600 um
can be fabricated using an inkjet printing technique based on
PDMS and Kapton film substrates. The flexible and high-
resolution deposition allows fast and accurate formation of coil
patterns. Adapting the sintering treatment improved the adhe-
sion between printed seed layer and substrates, allowing to di-
rectly electroplate the pattern towards thicker metal tracks. This
approach helps adapting inkjet printing to high-frequency elec-
tromagnetic application designs. The concept was successfully
demonstrated by acquiring an MR image using a rolled up coil
based on a Kapton film. Efforts towards improving the Q-factor
of the detector are currently underway, and further characteriza-
tion including spectroscopy measurements will be reported at a
later occasion.
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