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Abstract 

Novel multicolor electrochromic (EC) device based on 
electrochemical silver deposition was successfully demonstrated.  
The EC device exhibited reversible multicolor change of primary 
colors― transparent, magenta, cyan, yellow, black (CMYK) and 
silver mirror ―in a single cell by using electrochemical method 
which controlled the morphology of silver deposit.  In this paper, 
we particularly analyzed the coloration mechanism in detail. 

Introduction 
Electrochromism (EC) is defined as reversible color change 

caused by electrochemical redox reactions.  Electrochromic 
display has various advantages comparable to conventional 
displays, such as high visibility under sun light, a memory 
effect, and color variation.  Electrochromic display has been 
attracting significant interest for strong candidate in information 
displays such as electronic paper (e-paper). 

We had reported silver (Ag) deposition–based EC device 
achieving three optical states―transparent, silver-mirror, and 
black―in a single cell [1].  Its underlying mechanism was based 
on the electrodeposition of Ag nanoparticles on two facing 
transparent electrodes, a flat indium thin oxide (ITO) electrode 
and an ITO particle modified electrode.  The EC material, gel 
electrolyte containing Ag+ ion, was sandwiched by the two 
electrodes.  The device’s default state was transparent, whereas, 
applying a negative voltage to one or the other electrode causes 
the electrodeposition of Ag on its surface.  When Ag was 
deposited on the flat ITO electrode, the device turns mirror.  On 
the other hand, when Ag was deposited on the rough ITO 
particle modified electrode, the device turns black (Fig. 1).  

Although progress toward multichromatic representation in 
full-color EC displays has been expected [2-4], control of the 
multichromatic state using inorganic EC devices has rarely been 
reported.  Among our study on metal deposition–based EC 
device, we recently found multiple color changing phenomena 
based on electrochemically size-controlled Ag nanoparticles [5].  
In the research, we focused on the Ag nanoparticles exhibiting 
various optical states based on their localized surface plasmon 
resonance (LSPR).  The LSPR band is known to change its 
absorption wavelength depending on the size and shape of the 
nanoparticles [6, 7].  Therefore, dramatic changes in color are 
achieved by manipulating these bands.  

Experimental 

Materials 
Silver nitrate (AgNO3, Kanto Chemical Co. Inc.) and 

copper chloride (CuCl2, Kanto Chemical Co. Inc.) were used as 
received.  Dimethyl sulfoxide (DMSO, Sigma Aldrich Japan) 
was used as received.  Lithium Bromide (LiBr, Kanto Chemical 
Co. Inc.) was used as supporting electrolyte without further 
purification.  Poly (vinyl butyral) (PVB, Sekisui Chemical Co. 
Ltd.) was used as a host polymer for electrolyte gelation.  The 
ITO electrode (<10 Ω/□) was used after adequate washing. ITO 
particle dispersed solution (Sigma Aldrich, particle size is less 

than 100 nm (DLS)) was used for preparation of the ITO particle 
modified electrode.  

Sample preparation 
The gel electrolyte for the electrochromic cell was prepared 

as follows: 50 mM of AgNO3 as electrochromic material, 250 
mM of LiBr as supporting electrolyte, and 10 mM of CuCl2 as 
electrochemical mediator were dissolved in DMSO.  
Subsequently, 10 wt.% of PVB as host polymer was mixed into 
the DMSO-based electrolyte solution.  The ITO particle 
modified electrode was prepared by spin coating of ITO particle 
dispersed solution on a flat ITO electrode (500 rpm 5 s, 1500 
rpm 15 s).  Subsequently, the modified electrode was baked at 
250 ° C for 1 h. 

Fabrication of electrochromic cell 
The electrochromic cell (flat ITO electrode cell) was 

constructed by sandwiching the PVB-based gel electrolyte 
between two flat ITO electrodes, maintaining the inter-electrode 
distance of 500 m with a Teflon spacer.  The other 
electrochromic cell (ITO particle modified electrode cell) was 
constructed by sandwiching the gel electrolyte between the ITO 
particle modified electrode (as working electrode) and the flat 
ITO electrode (as counter electrode), also maintaining the inter-
electrode distance of 500 m.  The cell areas were both 1 cm × 1 
cm. 

Apparatus 
Chronoamperometric measurement was carried out using a 

potentiostat/galvanostat (ALS, 660A) equipped with a computer.  
Absorption spectra were recorded by on a diode array detection 
system (Ocean Optics, USB2000).  The surface morphology 
analyses of deposited Ag nanoparticles on the electrodes were 
carried out using a field emission scanning electron microscope 
system (FE-SEM; JEOL, JSM-6700F). 

Fig. 1 Photographs of Ag based EC cell from side view (a), before (b) and 
after application of bias voltage; -2.5 V for mirror state (c) and 2.5 V for 
black state (d). 
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Results and Discussion 
In order to obtain reversible changes among multiple colors 

by shifting the LSPR band, in the study the “voltage-step 
method” was applied using an Ag deposition-based EC device.  
In this method, two different voltages are applied successively 
(Fig. 2): the first voltage V1 is applied for a very short time t1 to 
initiate the Ag nucleation, and the subsequent second voltage V2 
is applied for a time t2 to promote growth of the Ag nuclei.  
Because V2 is more positive than the nucleation voltage, further 
nucleation is no longer possible during t2 [8, 9].  Therefore, 
growth of the Ag nanoparticles and the resultant color of the 
device can be controlled by changing t2. 

 
By applying the voltage-step method, magenta and cyan 

color states have been successfully observed in the Ag 
deposition–based EC device in our previous study [5].  
However, the ability to show three primary colors (yellow in 
addition to cyan and magenta) is more desirable for 
representation in full-color EC displays.  It is known that silver 
nanoparticle exhibits yellow color if its size is very fine (about 
5–10 nm) [7].  In this research, therefore, to obtain fine and 
uniform Ag nanoparticles, we introduce the voltage-step method 
and vary the electrode surface structure.  We measured the 
optical properties of the EC cell with flat ITO or ITO particle 
modified electrode during the step voltage application.  As a 
result, we newly enabled Ag deposition–based multicolor EC 
device to achieve yellow color representation in addition to cyan 
and magenta states.  Additionally in order to discuss the 
relationship between the morphologies of the electrodeposited 
Ag nanoparticles and the device color, we carried out field 
emission scanning electron microscopy (FE-SEM) analysis of 
silver-deposited electrodes.  

The electrochromic cell (flat ITO electrode cell) was 
constructed by sandwiching the PVB-based gel electrolyte 
between two flat ITO electrodes, maintaining the inter-electrode 
distance of 500 m with a Teflon spacer.  The gel electrolyte for 
the electrochromic cell was prepared as follows: 50 mM of 
AgNO3 as electrochromic material, 250 mM of LiBr as 
supporting electrolyte, and 10 mM of CuCl2 as electrochemical 
mediator were dissolved in DMSO.  Subsequently, 10 wt.% of 
PVB as host polymer was mixed into the DMSO-based 
electrolyte solution.  The other electrochromic cell (ITO particle 
modified electrode cell) was constructed by sandwiching the gel 
electrolyte between the ITO particle modified electrode (as 
working electrode) and the flat ITO electrode (as counter 
electrode), also maintaining the inter-electrode distance of 500 
m.  The cell areas were both 1 cm × 1 cm.  
 
 

Firstly the optical properties of the flat ITO electrode cell 
or ITO particle modified electrode cell were measured during 
the step voltage application.  Fig. 3a and insert show the 
absorption spectra changes of the flat ITO electrode cell and 
plots of the LSPR peak wavelength vs. the application time of 
the step voltage (V1 = –4.0 V, t1 = 20 ms, V2 = –1.6 V, t2 = 0–20 
s), which varied depending on the V2 application time t2.  In 
particular, absorbance of the cell below 500 nm increased within 
the first 5 s, and then the absorption peak of these spectra sifted 
to the longer wavelength side.  Finally, 20 s later, a spectrum 
with a maximum absorbance at around 620 nm was observed.  
The LSPR peak wavelength showed large red shifts 
(approximately 100 nm) during the step voltage application.  
Fig. 3b shows photographs of the cell taken on a light box under 
the applied step voltage.  As can be seen in the photos, the cell 
first turned magenta (t2 = 4 s) and then changed to cyan (t2 = 20 
s).  The colors of the cell observed on a light box corresponded 
well with their absorption spectra, demonstrating that the 
voltage-step method for the electrodeposition of Ag on flat ITO 
electrode enabled the EC cell to selectively display magenta and 
cyan based on the shift of the LSPR band. 

Then, we investigated electrochromic properties of the ITO 
particle modified electrode cell.  Fig. 4a and insert also shows 
the absorption spectra changes of the ITO particle modified 
electrode cell and plots of the LSPR peak wavelength vs. the 
application time of the step voltage (V1 = –4.0 V, t1 = 50 ms, V2 
= –1.6 V, t2 = 0–20 s).  Absorbance of the cell at 410 nm 
increased in early times and then the absorption peak 
wavelength of these spectra sifted linearly to the longer 
wavelength side with increasing application time.  20 s later, a 
spectrum with a maximum absorbance at around 430 nm was 
observed.  The LSPR peak wavelength shifted 20 nm during the 
step voltage application.  Interestingly, the degree of the LSPR 
shift of the Ag nanoparticles deposited on ITO particle modified 
electrode was much smaller than that on flat ITO electrode (Fig. 
3a).  Fig. 4b also shows photographs of the cell taken on a light 
box under the applied step voltage.  The cell first showed yellow 
color (t2 = 3 s) and then changed to orange.  The LSPR bands 
and resultant colors of deposited Ag nanoparticles were 
obviously different between on the flat ITO and the ITO particle 
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Fig. 2 Schematic representation of the voltage-step method.  The first 
voltage V1 is applied for a brief time t1 to form nucleation sites.  The 
first voltage is immediately followed by the second voltage V2 for a 
time t2.  Because V2 is more positive than the nucleation voltage, no 
further nucleation is possible. 

Fig. 3 a) Changes in absorption spectra of the flat ITO electrode cell 
during the Ag deposition process under an applied step voltage (the 
first voltage V1 = −4.0 V, t1 = 20 ms; the second voltage V2 = −1.6 V, 
t2 = 0–20 s).  Insert shows plots of the LSPR peak wavelength vs. the 
application time of the step voltage.  b) Photographs of the cell taken 
on a light box under the same applied step voltage. 
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modified electrode.   The voltage-step method, therefore, newly 
enabled the Ag deposition–based EC cell to produce yellow 
color representation in addition to cyan and magenta color by 
introducing ITO particle modified electrode. 

Finally, to demonstrate a capable of displaying three 
primary colors, black (CMYK), and silver-mirror in this LSPR-
based multicolor EC device, we combined this technique with 
our previously reported Ag deposition–based EC device that 
shows three optical states (transparent, silver-mirror, and black) 
[1].  An EC cell shown in Fig. 5a was fabricated and coloration 
of the EC cell was observed.  When a constant voltage was 
applied, the cell entered a mirror state as Ag was deposited on 
the flat ITO electrode (−2.5 V for 20 s, Fig. 5b).  When Ag was 
deposited on the rough ITO particle modified electrode (+2.5 V 
for 20 s), on the other hand, the cell turned black (Fig. 5c).  
Furthermore, when Ag nanoparticles were electrodeposited 
uniformly on the flat ITO electrode using the voltage-step 
method described above, the cell turned magenta or cyan 
depending on the V2 application time (Fig. 5d, e).  In addition, 
when fine and uniform Ag nanoparticles were electrodeposited 
on the ITO particle modified electrode using the voltage-step 
method, the cell turned yellow color (Fig. 5f).  These changes in 
the optical states were all reversible.  The optical change 
between transparent, silver-mirror, and black was stably 
maintained even after 2500 test cycles [1].  All optical changes 
in this device are based on the same mechanism of Ag 
deposition, so the repetition stability of the magenta, cyan, and 
yellow color changes is expected to be comparable with that of 
the change between the mirror and black state.  

 

 
 
 
 
 

 
Conclusion 

Three primary colors of magenta, cyan, and yellow have 
been successfully observed in the Ag deposition–based EC 
device by introducing the voltage-step method.  This color 
change was based on the control of the LSPR band of the Ag 
nanoparticles deposited on the flat ITO or ITO particle modified 
electrode.  Then, we applied this technique to our previously 
reported transparent–silver-mirror–black EC device, as a result, 
we successfully achieved the LSPR-based EC device with six 
states of transparent, silver-mirror, black, cyan, magenta, and 
yellow (mirror + CMYK).  The multifunctionality of this LSPR-
based multicolour display device could make it suitable for use 
in information displays and light-modulating devices such as 
full-color E-paper, digital signage, and smart windows. 
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