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Abstract. The development of novel manufacturing methods for
flexible, light weight and cost-efficient electronics has attracted great
interest in recent years. The inkjet printing technology is an attractive
fabrication process due to its additive, high precision and up-scalable
deposition process. One of the key components of printed electronic
devices is the conductive track. A major requirement is a desired and
device dependent electrical performance induced by an appropriate
post treatment process. Here, the novel method of using intense
pulsed light (IPL) to convert printed liquid films into solid and
functionalized metallic layers has great potential when it comes
to fabrication of electronics on thin, flexible and even stretchable
polymeric foils. Within this research, the IPL sintering and its
dependence on the spectral absorption and reflection of various
materials is investigated. A nanoparticle silver ink is inkjet printed on
a transparent PET foil. Afterwards, the printed samples are placed
at a defined distance from the background inside the photonic
sintering equipment and flashed on one hand with various flashing
parameters and on the other with changing background materials
and colors. Changing the background color influences the reflection
and absorption properties of the flashlight; the electrical performance
of the IPL processed conductive layers can be drastically changed
when such a phenomenon occurs. Highly conductive silver tracks
or electrodes can be manufactured on thin and flexible polymeric
substrates without damage. c© 2016 Society for Imaging Science
and Technology.

INTRODUCTION
To convert printed liquid patterns/films into solid functional
films with the desired microstructure as well as electrical
performance, a thermal post treatment is required. Within
this, solvents are evaporated, stabilizing additives and all
the organics are cast out and the metallic nanoparticles
(NPs) merge together.1 In most cases, high temperatures
are required, which makes this process unsuitable for the
thermally instable polymeric foils.1–4 In order to achieve
the desired electrical performance even on ultrathin, flexible
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Figure 1. The basic process of IPL sintering of an NP metal layer.

and stretchable substrates, which cannot withstand high
temperature treatments, novel sintering methods need to be
introduced. These technologies constitute the usage of, e.g.,
lasers,5–7 infrared (IR) radiation5,6,8 ormicrowaves,5,6,9 and
the method of intense pulsed light (IPL) sintering has also
been introduced as an alternative.5,6,10–13

The basic process is demonstrated in Figure 1. By
selectively irradiating the samples with high intensity light
flashes only over the dark NP metal ink films, the energy
(light) in the form of heat is absorbed by this ink film.
Polymer foils are, due to their transparency, not affected by
the light and hence are not directly heated. The process of
photonic sintering is in the range of microseconds (µs) to
milliseconds (ms). Even a drastic increase in temperature
inside the printed metal layer only lasts for a few ms, which
is theoretically too fast to affect the subjacent substrate.
Nevertheless, this heat impact has to be taken into account
at the border of the heated metal layer and the polymer
substrate.14

The major factors influencing the IPL sintering are
the intensity of the light and the optical properties of the
materials (substrate and ink) themselves. On one hand, the
absorption rate of the printed films and, on the other hand,
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Figure 2. Graphical description of possible absorption and reflection
schemes of a printed metal layer on a transparent substrate with 3 mm
distance to a colored background.

the absorption and reflection rates of the substrate and
surroundings have to be considered (Figure 2).

A metal film is directly heated by the absorbed light, but
could be also indirectly influenced by reflected light from
the surroundings.15 From Fig. 2 it is seen that the light is
transmitted through a transparent substrate, but the material
underneath is not transparent. The sintering system used in
this work (see Materials and Methods) has a closed setup
(housing), where light flashes are irradiated from the top via
xenon flash lamps and possibly get reflected by the walls and
especially by the background of the machine.

MATERIALS ANDMETHODS
The silver nanoparticle ink used in this work was UTDAgIJ1
(UT Dots, Inc.). The basic substrate was a transparent
poly(ethylene terephthalate) (PET) foil (Melinexr 401 from
DuPont Teijin Films) with a thickness of 100 µm. The
substrate was cleaned with ethanol and compressed air
before printing. Printing was carried out with a Dimatix
Materials Printer (DMP 2831 from Fujifilm Dimatix) with
10 pL printheads. The print pattern consisted of squares
of 5 mm × 5 mm dimensions as well as narrow lines of
5 mm length and 3 pixel width (3 pixel means three single
dot lines at a distance of 40 µm and therefore merging
to one narrow line) for the investigation of the electrical
characteristics by means of sheet resistance measurements,
visual characterization by a light microscope and a surface
profile analysis with a Dektak. The printed samples were
dried in an oven at 80◦C for 10min. Flashing was carried out
with a PulseForge 3200 from Novacentrix. This flash lamp
was integrated in a hybrid R2R modular printing machine
from 3D-Micromac AG, which enables inline printing and
sintering on an industrial scale. The dependence on the
light absorption and reflection during the IPL processing
was analyzed by varying the background base beneath the
transparent PET foil (Figure 3).

Three types of paper with varying spectral absorptions
and coatings were used to investigate whether the sintering
effect of NP silver ink films can be enhanced by varying
the light reflection. One was an uncoated paper with either
black or red color and the other one was a coated glossy
white paper. The distance between the sample and the

(a)

(b)

Figure 3. Graphical description of the experimental setup: (a) with direct
contact with the colored background; (b) without direct contact with the
colored background.

underground was set to 3 mm for the setup without contact
with the background.

The flashing energy was varied and the impact on
the electrical and optical characteristics was systematically
analyzed. The research included microscopic images (light
microscope DM4000, from Leica), surface profiles by surface
topographic scan with mechanical contact (profilometer
Dektak 150 by Veeco) and electrical measurements (sheet
resistance by a four-point method with a manual probe
system PM5, Süss Microtec) to prove whether changing the
background materials showed an impact on the electrical
and optical performance. Spectral analysis (TIDASMSP 800,
J&M Analytik AG) was carried out for the light absorption
and reflection of the background base materials and then
compared with relation to the results of the characterized
silver films.

RESULTS ANDDISCUSSION
Spectral Reflection and Absorption
The first investigation was on the absorption and reflection
of the varied background materials as a basis for the
experiments and results interpretation. It was found that on
a coated white paper the highest reflection and the lowest
absorption rate can be measured, whereas an uncoated black
paper has the lowest reflection and highest absorption rate
among the background materials used.

Optical Analysis
In Figure 4, microscopic images of UT Dots silver lines
printed on PET and flashed with a lower energy density
of 0.96 J/cm2 are presented. It can be seen that the silver
lines flashed with the red as well as the white background
show a slight dark border (Fig. 4(b) and Fig. 4(c)). In the
magnification of the line border for the white background a
small crack along the line is visible.

In the surface profiles (Figure 5), this darker border
turns out to be a formation of a hill and a valley at both edges
of the silver line flashed with the red and white backgrounds
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Figure 4. Microscopic images of printed and flashed (0.96 J/cm2) silver
lines without contact with the background: (a) black background; (b) red
background; (c) white background.

(Fig. 5(b) and Fig. 5(c)). The hills have a height of around
1.5 µm and the valleys a depth of around 0.3–0.8 µm for
the background colors red and white. The silver line with the
black background has an average height of∼0.3 µm,whereas
the average heights for the red and white backgrounds
are increased to 0.4 µm and 0.5 µm, respectively. The
silver line flashed with the black background does not have
this characteristic. It is therefore concluded that the black
background seems to absorb a greater amount of light energy
and therefore results in a lower energy density within the
photonic sintering process, which causes reduced damage
of the silver patterns (lines as well as squares), whereas the
red and white paper, but especially the white paper, reflect
a greater amount of light energy and therefore enhance the
energy density inside the photonic sintering process, and
therefore also enhance the sintering temperature and cause
the characteristic defects. These cracks occur especially at the
boundary between the silver and the PET foil. The reason
could be the thermal impact on the temperature instable PET
foil at this boundary.

On analyzing the images that refer to the printed
layers flashed with a higher energy density (1.25 J/cm2),
the cracks at the borders of the silver lines are clearly
increased and are visible for the red and white backgrounds
(Figure 6(b) and Fig. 6(c)). Optically, the samples with the
black background also present a slight black border around
the silver line (Fig. 6(a)), but the magnification still shows no
crack formation here.

In the surface profiles, a hill formation for the samples
with the black background with up to around 1.3 µm was
observed (Figure 7(a)). However, no valley and therefore no
crack inside the PET foil could be noted from the profiles.

(a)

(b)

(c)

Figure 5. Surface profiles scanned over a single silver line after flashing
with 0.96 J/cm2 without direct contact with the background: (a) black
background; (b) red background; (c) white background.

The profiles over the lines for the red and white backgrounds
(Fig. 7(b) and Fig. 7(c)) were comparable to the ones with the
lower energy density of 0.96 J/cm2 (Fig. 5(b) and Fig. 5(c)).
In conclusion, for the black background, an impact on the
silver lines could be observed, resulting in a hill formation at
the edges, but still no crack formation.

Electrical Analysis
Apart from the optical investigation, the main focus is laid
on the electrical characteristics of the flashed samples and
whether an effect on the sintering effect can be achieved
by varying the spectral absorption and reflection of the
background (Figure 8).

It was found that the white background resulted in the
least sheet resistance for both setups, which were with and
without contact with the background (Fig. 3). This can be
explained by two reasons. One is the high reflection of the
white color in general, but also the white paper had a glossy
coating, which additionally enhanced the light reflection. As
expected from the black colored background paper, the sheet
resistance was drastically increased or the sintering was not
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Figure 6. Microscopic images of printed and flashed (1.25 J/cm2) silver
lines without contact with the background: (a) black background; (b) red
background; (c) white background.

sufficient at all to form conductive structures. Interpretations
could be made that the darker material absorbs more and
reflects less light, and therefore leads to a minor sintering
effect.

For both setups (with and without contact), the sheet
resistance decreases with increasing energy density of the
flash lamp. At the highest energy density used of 1.25 J/cm2,
the background color shows minor impact on the sheet
resistance. For example, in the setup without contact with
the background (Fig. 8(b)), the sheet resistances for the
white, red and black backgrounds are 0.28 ± 0.02 �/�,
0.3 ± 0.17 �/� and 0.55 ± 0.03 �/�, respectively. Taking
into account the crack formation for the white and red back-
ground colors, the black background resulted in comparable
low sheet resistance without any crack formation at the same
energy density.

CONCLUSIONS
A nanoparticle silver ink was inkjet printed on a 100 µm
thin PET foil and IPL sintered with various energy densities.
The background color of the flashing systemwas varied from
highly reflective glossy white paper to uncoated (not glossy)
red and black paper. The samples were flashed with direct
contact or a gap of 3 mm to the background.

It was found that the highly reflective white background
resulted in low sheet resistance at comparable lower energy
densities of 0.96 J/cm2, whereas the samples on the black
background did not present conductivity at all at this energy
density. Increasing the energy density to 1.25 J/cm2 results
for all of the background colors in sheet resistances below
1.5 �/� for the with contact setup and below 0.6 �/� for

(a)

(b)

(c)

Figure 7. Surface profiles scanned over a single silver line after flashing
with 1.25 J/cm2 without direct contact with the background: (a) black
background; (b) red background; (c) white background.

the without contact setup. It was demonstrated that a highly
reflective background increases the sintering and therefore
increases the conductivity of the samples compared with
a highly absorbing black background. However, the use of
higher light energy densities results in minor differences
in the sheet resistance between the background colors.
Although with the highly reflective white background, on
the one hand, the lowest sheet resistance at lower energy
density could be achieved, defects like cracks inside and
delamination of the silver layer were observed, which are not
feasible for printed electronic applications. No defects in the
silver layers were obtained for the black background even
with higher energy densities, but it resulted in a similar low
sheet resistance and therefore was more suitable for printed
electronic applications. It is of major importance to find the
right balance between absorption and reflection in relation
with the flashing energy to achieve optimal results.

In conclusion, the background color of the substrate
holder has a major influence on the electrical performance
and the defect formation for the intense pulsed light sintering
process.
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Figure 8. Measured sheet resistance of silver films in dependence on
flashing energy and background: (a) with contact; (b) without contact.
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