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Abstract. Wireless reliability tests of lightweight composite materials
by electromagnetic waves have become more and more interesting
in the aerospace and automotive fields. The embedding of
conductive printed patterns as electromagnetic resonators seems
to be one of the useful techniques. The printing technology is
a resource as well as time and cost efficient fabrication method
to manufacture electronic devices. In particular, contactless and
digital technologies like inkjet printing have great potential to be
combined with integration processes like resin infusion technology.
The combination of these manufacturing processes enables fast
and efficient production of smart lightweight applications. The main
focus of this work is the manufacture of a passive high frequency
resonator on flexible substrates using inkjet printing. The conductive
patterns are integrated into a composite material by resin infusion,
enabling sensor applications in the field of clean energy, particularly
for wireless ice detection on wind rotor blades. (© 2016 Society for
Imaging Science and Technology.

INTRODUCTION

Printing technologies like drop-on-demand inkjet printing
lead to resource, cost and time efficient manufacturing.
Using such a digital printing method, the patterns to be
printed can be created very flexibly and no printing form
is required. Moreover, expensive materials like silver ink
can be applied efficiently as well as accurately with a
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small volume. As inkjet is a contactless printing method,
various substrates can be chosen, especially flexible ones.!~?
Printing technology enables low-cost, flexible and large-scale
production of various electronic devices like thin-film
transistors, radio-frequency identification tags, organic solar
cells, memory devices or sensors.*~8

Injection or transfer molding processes to integrate con-
ventional electronic devices into lightweight applications as
well as molded interconnect (MID) devices and overmolding
procedures are already well known and investigated. To name
only a few composites, 3D circuits, injection molded printed
wiring boards, plastic disposable biochips or micromechan-
ical sensors and actuators can be produced with these
technologies.”~!® The integration of printed, especially inkjet
printed, electronic components into lightweight materials to
realize smart composite objects has barely been investigated,
even though the deposition of printed electronic devices onto
thin and flexible films gives the opportunity to integrate these
devices easily into lightweight applications.!*1°

We investigate an inkjet printed passive sensor for
integration into lightweight structures, in our case a glass-
fiber-reinforced plastic. This approach could later on be used
for wireless ice detection on rotor blades. Ice accretion on
rotor blades of wind turbines leads to various problems in
the field of green energy. On the one hand, icing causes a
shutdown of the turbines because of changed aerodynamics,
and therefore a reduced yield. On the other hand, the
falling down of ice fragments while the system is running
brings risk to nearby humans.!®17 Several conventional
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detecting systems exist, including indirect methods by
observation of weather conditions, aerodynamic noise or
change in the blade resonant frequency, as well as direct
sensor systems, e.g., measured damping of ultrasonic waves,
inductance and impedance change, temperature changes or
piezoelectric sensing. The indirect methods like observation
of weather conditions mostly lead to system shut downs
due to assumptions independent of the actual ice accretion.
Current direct sensing systems are mostly not directly
deposited on the blades, which leads to low sensitivity and
reliability.!®!® Our printed sensor arrays could be directly
integrated into the wind rotor blade material during its
manufacture, and no wiring would be necessary. By means
of the integrated passive high frequency sensor an external
reading system could measure actual ice accretion. This
would lead to an improvement of the reliability as well as
energy yield by real-time measurements.

EXPERIMENTAL

Sensor Simulation—Printing Layout

To study the effect of ice accretion on a passive resonant
structure and to investigate the behavior, electromagnetic
wave simulation using the Computer Simulation Technology
(CST) Microwave Studio was performed.

To simulate a two-dimensional array of resonators the
unit-cell simulation model is used. It gives the opportunity
to define and to model a single element which is extended
to a periodic structure with virtually infinitive size by the
simulation software.

The unit-cell size is 9 mm x 9 mm. The simulation
model consists of three layers. The first layer is the reflector
element (4.5 mm x 4.5 mm). This element’s conductors are
infinitely small in thickness to simplify the simulation model.
The substrate is a PET foil with a thickness of 140 um and
an adhesive coating. The foil has a permittivity of 3. The
third layer of the simulation model is a glass-fiber-reinforced
plastic (GFRP) material with thickness of 4 mm and an
assumed permittivity of 4.6. The surrounding material of the
model is vacuum.

The 3D unit-cell model of one integrated sensor element
in GFRP with ice accretion can be seen in Figure 1(a).

If the pattern decreased the basic reflection peak would
move to a higher frequency. If the pattern increased the
reflection peak would move to a lower frequency.

The square geometry was chosen because it is a simple
resonant structure that enables a reflection peak depending
on the dimensions of the patches and their arrangement with
respect to each other. The aim was to design a resonator
array where the target reflection peak occurs in the frequency
range close to 24 GHz. This frequency band is license free.
It is a so-called ISM band that can be used for industrial,
scientific and medical applications.

In Fig. 1 (b), the first-order reflection peak of the
integrated square patch shows a reflection peak in the
frequency range from 15 to 17 GHz. For the sensor approach
employed different materials are used. All of the materials
have an influence on the occurrence of the reflection peak.
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Figure 1. (a) Simulation model. (b) Simulation result showing the reflected
signal power at different ice thicknesses.

From the results we can see that the 24 GHz frequency has
not been achieved yet.

The results show the reflection without and with ice
accretion. In the case of ice accretion, the reflection peak
shifts down to lower frequencies. This is because of the
permittivity of the ice, which is higher than that of the
surrounding air. The higher permittivity (g, = 3.175)! of
the ice concentrates more of the electromagnetic field inside
the material, which leads to an increased capacitive load. The
additional capacitive load leads to a detuning of the sensor
elements, which respond with a lower resonance frequency
and a shift of the reflection peak to lower frequencies.

As can be seen in Fig. 1(b), further investigations on the
influence of the ice thickness need to be made. However, at
this time the main objective of the research is to show that ice
accretion affects the sensor behavior and causes a shift in the
resonance frequency.

Out of the unit-cell simulation a 90 mm x 90 mm array
was generated by the simulation software, giving the final
printing layout. The pattern to be printed can be seen in
Figure 2.
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Figure 2. The printing layout—an array of squares for a passive sensing
application.

Inkjet Printing

Machinery

The reflecting elements of the sensor are digitally printed
by a Dimatix Materials Printer (DMP) 2831 consisting
of a piezoelectric printhead with 16 nozzles. A cartridge
printhead generating drops with 10 pL drop volume is used.

Materials

The printing experiments were carried out on the coated
PET based substrate Novele™ 1J-220 with a thickness of
140 + 12 um distributed by Novacentrix. This substrate was
used because it is suitable for printed electronic applications.
It was also chosen because of the ink performance on this
substrate, namely, patterns could be printed with sharp edges
and less spreading of the ink. The ink for the realization of
the sensor on the substrate was the nanoparticle silver ink
Silverjet DGP-40LT-15C from Advanced Nano Products. For
functionality formation the ink was post-treated by infrared
(IR) radiation from a short-wave twin tube emitter made
of quartz glass by Heraeus (maximum specific power of
75 W/cm, 20 cm distance).

Integration

The printed array is embedded by using resin infusion
technology. The material is similar to the material used in
the manufacturing process of rotor blades for wind turbines.
The PET substrate with the printed patterns is located
on a laminating tool with the printed side on top. Then,
glass-fiber-reinforced textiles (250 g/m?) are assembled with
alternate fiber directions of 0°and 90°(see Figure 3). The
whole stack is covered with an additional foil and set under
vacuum (up to —860 mbar). In between the foil and the
laminating tool the printed foil and the glass fibers are
cross-bonded in a mixture of epoxy resin and hardener by
an infusion molding process. After 24 h hardening time,
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Figure 3. Layer design for the GFRP.

the glass-fiber-reinforced plastic (GFRP) composite of 4 mm
thickness with the integrated printed array is finished.

The fabricated sample is the simulated model.

The performance of the sensor depends on all the
different materials of the composite that surround the
printed pattern. Hence, the layout of the pattern has to be
adjusted to the application and to the materials used.

Analysis

Printed Pattern

First of all, the behavior of the ink on the Novele substrate
was investigated. One pixel lines as well as 10 pixel lines with
different drop spaces (DSs) were printed on the substrate,
and the maximum DS that led to closed layers and sharp
edges was found. Sharp edges and accurate dimensions
are important. Open layers, blurred edges and inaccurate
dimensions affect the target design of the sensor. This
includes the target frequency and the quality factor of the
resonance peak. Printed lines as well as squares were analyzed
optically by microscopic images, morphologically by surface
profile measurement (Veeco Dektak 150) and electrically by
line resistance (1 px line width) as well as sheet resistance
measurements (four-point Van-der-Pauw method). These
measurements lead to the optimal DS to be used to realize the
simulated sensor array as precisely and reliably as possible.

Reflection Performance of the Integrated Sensor

For measuring the reflection peak of the composite, two
standard gain horn antennas are used in combination with
a vector network analyzer (ZVA50, Rhode & Schwarz). The
antennas are located in front of the sample and are arranged
to perform a reflection measurement. One antenna is used to
illuminate the fabricated passive sensor array while the other
antenna receives the reflected signal. The vector network
analyzer performs a frequency sweep to measure and analyze
the reflection response in the desired frequency range from
15 to 17 GHz. From the obtained reflection response, the
behavior of the passive sensor can be investigated. The
measurement includes investigation of ice accretion that is
generated on the composite surface to study the change in
the reflection response. For this purpose, a thin ice layer
was generated on the surface of the sensor device. This was
done using a spray flask to produce a thin water film, and
a freezer to convert it into ice. The procedure of producing
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ice was applied multiple times to obtain ice layers with
different thicknesses. To show the effect of ice accretion on
the reflection response, several measurements—without and
with ice load—were performed. Afterwards, the recorded
reflection behavior was analyzed.

Because a spray flask was used for the ice layer
generation, the measurement and the obtained results are
difficult to reproduce due to the inhomogeneity of the
ice layer. Therefore, further investigations are necessary to
evaluate and reproduce the measurements.

RESULTS AND DISCUSSION

Printing

Optical Characterization

As explained above, silver lines with different DSs are printed
on the Novele substrate. One pixel (px) as well as 10 px
wide lines are printed. As Figure 4 shows, closed and
homogeneous 1 px (top) and 10 px (bottom) lines can be
realized up to DS 30 um. In the case of 1 px lines printed
with a DS higher than 30 um, it seems that the line starts to
form single drops. The effect is clearer for the 10 px lines,
because there are missing areas from DS 40 um on. Besides
the increased DS, the reason for layers that are not closed
might also be the coating of the Novele substrate. The coating
is also verified by the stripe structure of the printed layers,
which can be clearly seen in the case of the 10 px lines from
DS 20 um on.

Morphological Characterization
After the optical characterization, a profile measurement to
determine the layer thickness as well as the line widths was
performed. These evaluations are important to determine the
DS that leads to patterns with high accuracy and optimal
electrical performance for the resonator layout.

Each graph of Figures 5 and 6 represents one measure-
ment on one line. This should only serve as an example to
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Figure 4. Silver ink on Novele PET foil printed with different DSs (iop,
1 px width; bottom, 10 px width).
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Figure 6. Dependence of layer thickness and printed line width on DS
(10 px line).

visualize the appearance of the lines printed with different
DSs.

Fig. 5 shows the surface profiles of the 1 px lines from
DS 5 um to 50 um. The curves show that with increased DS
the layer thickness as well as the line width decreases. It can
also be seen that the lines have a higher layer thickness at the
center.

The influence on the layer thickness and line width
of different DSs for 10 px wide lines was also considered.
In Fig. 6 it can be seen that the layer thickness rapidly
decreases by increasing the DS. It is obvious that the line
width increases by increasing the DS from 10 to 50 pm
because of the 10 px width which was fixed digitally. The
wide line printed with DS 5 um is because a lot of material
is deposited, resulting in spreading of the ink. From DS
40 um on, the layer shows inhomogeneities until missing
areas appear for DS 50 um, which was already observed by
the microscopic images. The profile measurement in general
shows that the layers are not homogeneous.

The measured line widths of the 1 px lines can be seen
in Figure 7.

They confirm that the printed line width decreases by
increasing the DS.

The average layer thickness was also measured. Figure 8
demonstrates the average layer height of 1 px lines (left)
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(right) printed with different DSs.

and 10 px lines (right) depending on different DSs. The
measurement shows that the layer thickness is strongly
dependent on the DS. By increasing the DS the layer height
is reduced.

Electrical Characterization

Due to the fact that the printed layers have errors from DS
40 um on, the electrical analysis was performed for DS 5, 10,
20 and 30 um. For the line resistance, only the 1 px lines were
considered, measured at a distance of 1 cm. The results can
be seen in Figure 9.

The line resistances, especially for larger DSs, are
very high. The reasons could be inhomogeneous layers,
contacting difficulties and also, most of all, the coating of
the substrate, which could lead to disturbances in the very
thin lines. The smallest line resistance could be achieved with
DS 5 pum (39 4 2), but with this DS too much material is
applied and no sharp edges are possible. Additionally, thin
lines could not be realized: the average line width of a 1 px
line printed with DS 5 um is 117 &£ 4 pm. Moreover, the layer
thickness is high compared with larger DSs (1554 & 23 nm).
It can also be seen that with larger DS the standard deviation
of the measured line resistance values rapidly increases.
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To determine the sheet resistance of the silver ink on the
particular substrate, squares of 4 mm x 4 mm are printed
and measured. The sheet resistance should be as low as
possible, because the sensor operates at high frequencies.
A high sheet resistance means high losses, and this causes
a decrease in the amplitude of the reflected signal. The
aim is to provide a high quality factor that results in a
high reflection amplitude. A range of sheet resistance for
acceptable performance cannot be given at this early state,
because the sheet resistance is not the only parameter that
influences the performance of the sensor. The results are
plotted in Figure 10.

As the measurements demonstrate, the sheet resistance
for DS 5 um is comparably small (~0.01 €/[0). However,
this DS will not be used for the printing of the sensor array
because of the previously mentioned reasons. Regarding the
sheet resistance, the values also increase by increasing the DS.

As a conclusion of the measurements and investigations
made on lines and squares printed with different DSs, a final
DS of 20 um was used to print the layout of the sensor array
described in the experimental part. The reasons for this are
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Figure 11. One sensor element printed with DS 20 pm.

to be sure to have a closed layer, sharp edges and accurate
dimensions of the printed patterns. The 1 px lines printed
with DS 20 um have a line width of 64 & 1 um and a layer
thickness of 762 = 36 nm. The line resistance of the 1 px
lines is high (225 £ 106 €2), but if the sheet resistance is
considered, the value is sufficient for the intended application
(1.07£0,04 2/0).

One sensor element (4.5 mm x 4.5 mm) printed with
DS 20 um is shown as an example in Figure 11. As already
mentioned, the stripe structure might result from the coating
of the substrate.

Integration
The integration of the printed passive sensor on the Novele
substrate by resin infusion technology into glass-fiber-
reinforced plastic did not present any difficulties. The printed
PET foil could be integrated without any delamination
effects. The final composite can be seen in Figure 12.
Although the reflection array is encapsulated by the
fabrication material, it is able to sense changes in the
environment close to the senor.

Figure 12. Composite of inkjet printed passive sensor array on coated
PET foil infegrated into glassfiberreinforced plastic.
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Reflection Measurement

After the printing and integration process, the device which
should be able to detect ice by passive sensing was finally
characterized by its reflection behavior with and without ice
load.

The reflection measurements show different reflection
curves in the frequency range from 15 to 17.5 GHz. Each
of the mapped reflection curves (Figure 13) is related to
specific ice load and ice thickness. The approximate ice
thickness was measured with a steel scale from the edge
of the GFRP composite to the ice surface. However, due
to inhomogeneous ice growth the value of the thickness
is not completely precise, as a result of the ice growing
method which is still under development. Without ice load
the obtained reflection peak is around 16.6 GHz.

In the case of ice accretion and an increasing ice layer,
the reflection peak moves down to lower frequencies.

In Figure 14, the diagram of frequency against ice
thickness can be seen. It shows that in the case of ice accretion
and an increasing ice layer, the reflection peak moves down
to lower frequencies. Furthermore, the obtained results
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Figure 13. Results of the reflection measurement of the inkjet printed
passive high frequency sensor infegrated into GFRP (without ice and with
different ice thicknesses).
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indicate a relation between the thickness of the ice layer
and the strength of the reflection peak shift approximating
to a specific value. To evaluate this assumption, further
measurements and investigations as well as studies of the
influence of dust and humidity are required.

In comparison to the simulation, the measurement
results have a higher attenuation due to the free space loss
which was not considered in the simulation.

CONCLUSION

It is demonstrated that ice detection by an inkjet printed high
frequency passive sensor is possible. The sensor array printed
on a coated PET foil could be successfully integrated into
an epoxy resin based glass-fiber-reinforced plastic without
delamination, and it was still able to sense changes in the
environment.

Optimized drop spacings of the deposited silver ink
on the particular substrate were demonstrated and used to
realize the passive sensor array. A DS of 20 um was found
to be sufficient to realize closed and thin layers with straight
dimensions. In further research, printing parameters like
firing frequency, drying time and surface wettability will also
have to be considered.

The reflection measurements on the printed sensor array
surrounded by the GFRP showed a shift of the reflection
peak to lower frequencies by ice accretion. The thickness of
ice accretion depends on the location and the environmental
conditions of the wind power plant. Significant ice accretion
on rotor blades can reach several centimeters at the leading
edge. To evaluate the assumption of the relation between the
thickness of the ice layer and the strength of the shift of the
reflection peak, further measurements and investigations are
required in future work. Moreover, the reproducibility of the
simulated ice growing on the composite has to be evaluated
and performed in free space.
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