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Abstract
We present polymer optical waveguides on foils created by

a combination of flexographic and ink-jet printing. While prior
work focused on the creation of bare polymer tracks to guide
light, this work looks into optical waveguides with a printed lower
cladding layer, which makes the waveguide design independent
from the optical properties of the foil substrate. First, the lower
cladding is printed by flexographic printing on PMMA foil. Then,
the sample is placed in an ink-jet printer, where the waveguide
core is created. To control the wetting behaviour, temperature
and oxygen plasma treatment are used, and continuous tracks
are obtained. The waveguide functionality is demonstrated by
guiding 785 nm laser light through a 20mm long sample.

Introduction
Planar optronic systems are a novel concept of foil-based

sensor systems that rely completely on optics[1]. By using op-
tical sensor concepts to measure quantities like temperature[2],
humidity[3, 4], or elongation[5], these systems promise to be
a feasible alternative for well-established electronic systems, as
they have the potential to be faster, more robust, cheaper, and
lighter, than existing systems. Using foil as substrate material en-
ables a cost-efficient fabrication of these sensor systems by using
roll-to-roll compatible manufacturing processes. A key element
of these systems are optical waveguides, which can be created by
printing methods.

Printed optical waveguides have already been investigated
by several groups[6, 7]. Generally, the researchers reported diffi-
culties in creating structures sufficiently high to couple light into
the core, which is necessary to measure the optical transmission
at the end of the printed structures.

Flexographic printing allows relatively high aspect ratio
structures, but it is difficult to achieve lateral feature sizes below
100 µm. Because of this, it is combined with ink-jet printing to
exploit both the high speed and through-put of flexographic print-
ing, and the higher resolution and flexibility of ink-jet printing. A
lower cladding has the advantage that one becomes independent
of the optical properties of the foil substrate, which before had
the role of the bottom optical interface.

The optical waveguides demonstrated in this work follow
previous work [8], but this is the first time that functionality
of printed waveguide created by both flexographic and ink-jet
printing could be demonstrated by guiding light. The waveguides
are created in two process steps. First, a lower cladding layer is
printed on PMMA foil by flexographic printing. Then, printing
the actual waveguide core is performed via ink-jet printing. For
this, two inks are investigated for ink-jet printing: An in-house
developed acrylate-basedmonomer, and a commercially available
epoxy based ink.

Figure 1. Microscope image of printed optical fiber. The image shows a cross-
section of the PMMA foil substrate with a printed flexographic track as lower cladding.
On top of the flexographic track is a smaller, ink-jet printed waveguide core.

Ink Name Manufacturer Purpose Refractive
Index

UV-Glanzlack
praegefaehig

Jaenecke-
Schneemann

Cladding 1.52

InkEpo MicroResist Core 1.55
UGS70E in-house Core 1.56

Table 1: List of inks used in the presented experiments.

Materials and Methods
Inks

A major requirement for materials used for optical waveg-
uides is that they are optically clear. Here, this also means that
there must be no particles, bubbles, and other impurities caused
by printing or UV-polymerization. As the principle of an optical
waveguide relies on total internal reflection, the material used for
the cladding is required not only to be optically transparent, but
also to have a lower refractive index than the core material. Three
materials which fulfill these criteria were selected and are listed
in table 1.

The ink used to create the lower cladding is a commercially
available acrylate polymer ink. It has a dynamic viscosity of 200
mPa · s at room temperature and a refractive index of around 1.52
in the visible spectrum.

For ink-jet printing, two inks were available. InkEpo is a
commercial product (MicroResist, Berlin)[9] based on an epoxy
resin, with an volatile solvent added to reduce the viscosity to a
regime compatible with ink-jet printing (12mPa · s). The sol-
vent has to evaporate before polymerization, which reduces the
deposited volume and vastly increases the time required to fabri-
cate a sample. The second ink is an in-house development, with a
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Figure 2. Viscosity of Syntholux with EGDMA as additive. The refractive index was
tuned later by adding phenantrene.

commercially available acrylate monomer (Syntholux, Synthopol
Chemie) as base material. Similarly as InkEpo, it has to match
a certain viscosity to be ink-jet printable. To reach 10mPa · s,
70 % Ethylene glycol dimethacrylate (EGDMA) are added. This
material has the big advantage that it is integrated into the poly-
mer matrix upon UV-polymerization [4], and does not need to
evaporate. Therefore, the deposited volume is maintained. The
effect of EGDMA on the ink viscosity and refractive index is
shown in Figure 2. Additionally, phenantrene is added in the
ink to increase the refractive index to 1.56, and a photo-initiator
(Irgacure 184, BASF) to allow radicalic polymerization.

Printing Optical Waveguides
For the flexographic printing, a Heidelberg Speedmaster 52

(Heidelberger Druckmaschinen AG) was used to print 25 con-
secutive layers of the "UV Glanzlack praegefaehig" on PMMA
foil. The resulting tracks were 800 µm wide and 110 µm high.
A detailed description of the process and parameters for printing
these tracks is described in an earlier publication[8]. However,
while before, the tracks were intended as the light-guiding core
of an uncladded optical waveguide, here they serve as the lower
cladding for an ink-jet printed waveguide core.

For this, the foils were placed in a Dimatix DMP2831 ink-
jet printer (Fujifilm Dimatix). This device allows to use a piezo-
actuacted printhead with a nominal volume of 10 pl with an ac-
tuation voltage of 30Volts to print the inks heated to 45° C to
match the viscosity requirements for a reliable droplet formation.
To control the wetting behaviour on the lower cladding, oxygen
plasma treatment (Diener Femto O2) before the ink-jet printing
and elevated substrate temperature were employed. After print-
ing, the ink was polymerized with a Phoseon FireFly 365 nmLED
light source (Phoseon Technology) .

Characterization and Results
InkEpowas successfully used to create continuous lines with

a smooth morpholgy with the substrate heated to 60° C and an
oxygen plasma treatment of 60 seconds. The cross-section of this
result is shown in Figure 1. Longer plasma treatment led to ink
spreading, shorter plasma treatment to individual droplets. 12
layers of ink were printed. After printing, the sample was kept at
60 degrees for 1 hour to evaporate the solvent. However, it was

Figure 3. Printing devices used in this research project. Top: Heidelberger Speed-
master 52. Bottom: Dimatix DMP2831.

Figure 4. Measurement plots obtained from Zygo NewView white light interferom-
eter, showing the waveguide core on the cladding layer.

295Printing for Fabrication 2016 (NIP32)



Figure 5. View onto the waveguide facet from top through a microscope which was
used to align the light source. From the left, a glass fiber carrying purple 405 nm
laser light is visible. This light couples into the waveguide core and causes blue
fluorescence along the beam path.

Figure 6. Microscope image of the waveguide facet on the other side. The lower
cladding is visible by stray light. The bright spot in the center is the waveguide core.

not possible to rule out areas where the wetting was not optimal,
resulting in occasional breaks of the waveguide core.

For UGS70E, it was not possible to find parameter which
resulted in smooth lines. With all sets of parameters, the ink
spread out on the cladding layer in an uncontrollable fashion.

Shape of printed structures
The shape of the printed structures was characterized in

a Zygo NewView100 white-light interferometer (Zygo Corpora-
tion). In the areas where the waveguide shape was smooth, the
printed core fabricated by ink-jet printing is 200 um wide and
about 10 um high, with variations in the range of 10% for both
parameters. The measurement is shown in Figure 4.

Optical characterization
An optical waveguide sample with a length of 20mm was

created by manual cleaving[8]. At one end of the waveguide,
light was coupled by bare glass fiber facet placed under a mi-
croscope (Figure 5). First, 405 nm laser light, which causes the
printed polymers to fluoresce, was used to align the glass fiber
with the printed structure and visualize the beam path within the
waveguide core. Then, the 405 nm laser was exchanged with a
785 nm laser with 1mW optical power. At this wavelength, the
used polymers are transparent, and the light can propagate. A
CCD-Camera with microscope objective was directed at the sec-
ond facet. After careful alignment, it was possible to achieve
light in the waveguide core (Figure 6).

Discussion and Outlook
Although the demonstration of the waveguide functionality

was successful, it was not possible to deduct an absorption value,
because of several reasons. The biggest concern is the stray light
in the waveguide cladding (Figure 6), which has a significant
contribution to the total measured power at the rear facet. Not

Figure 7. Microscope images of the same line, with areas where the ink did not wet
the lower cladding in a continous line, and areas where the track remained continu-
ous.

only does this effect make it difficult to differentiate between light
in the core and light in the cladding, but it has to be investigated
if the stray light is caused by bad coupling, or if the interface
between waveguide core and cladding causes scattering. This
scattering would be an major problem of the presented waveguide
concept.

Just as reported from other researchers, control over the
waveguide morphology to achieve a high aspect ratio was dif-
ficult. Figure 7 shows two sections from the same waveguide,
printed with identical parameters. In some areas, the wetting is
sufficient, but in other areas, the material de-wets the cladding
layer and forms individual droplets. Naturally, one such hitch
along a long waveguide is sufficient to disable the light guid-
ing properties of the entire waveguide, just as it is the case for
printed electronic tracks. Also even minor changes in diameter
might have a significant influence on the light scattering, which
is why the investigated tracks were only 20mm long, and a value
to express the attenuation per length unit cannot yet be given re-
liably. However, if the plasma treatment time was increased to
counteract this de-wetting, then the ink began to break the line
and spread out in other areas. This means that the field between
too much wetting and de-wetting is very small, and therefore the
process is not robust enough yet to ensure reliable processing in
a mass-production application.

A possible solution for both presented problems would be
to cover the entire lower cladding track, and to use the lower
cladding layer as pinning edge of the printed waveguide core.

296 © 2016 Society for Imaging Science and Technology



This would allow both a higher aspect ratio and a better defined
morphology. The higher aspect ratio would allow more robust
coupling and a better light propagation in the core.

Naturally, an optical waveguide does also require an upper
cladding to protect the waveguide core. As the only requirement
to this layer is an interface with the printed core, there are numer-
ous options to achieve this, either by a locally defined deposition
technique like printing, or by spin- or even spray-coating.
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