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Abstract 

As the drop-on-demand (DOD) inkjet industry moves 
towards higher print frequencies to achieve higher productivity, 
the nozzle recovery rate and turnover time becomes increasingly 
important, in that attempting to jet from a nozzle that has not 
fully recovered results in meniscus instability and poor 
reliability [1] [2]. 

We have developed a new, simple, and rapid quantitative 
technique to measure the microsecond relaxation time of inks at 
a timescale relevant to DOD inkjet waveforms by exploiting the 
Piezo-Axial Vibrator (PAV) [3]. This microsecond relaxation 
has been found to be directly relevant to the maximum inkjet 
print frequency achievable. This has allowed for inks of any type 
to be screened, compared for batch variations and tailored for 
suitability for specific high-frequency jetting applications. 

The results show that this relatively inexpensive and 
compact equipment can detect changes in the microsecond 
relaxation with a high degree of sensitivity, with the effect of 
dynamic fluid properties beyond surface tension, viscosity or 
density able to be detected and quantified, allowing for new 
formulations to be developed with higher print frequencies in 
mind. 

Introduction 
The biggest remaining limitation in productivity for 

industrial inkjet processes such as labels and coding & marking 
is the line speed; meaning that there is a continual push towards 
higher speeds and consequently higher print frequencies. While 
much progress has been made in the actuator design by 
increasing resonant frequencies through smaller actuators such 
as thin-film MEMS [4], and single-cycle actuator technologies 
[5] including Alternate Line Active (ALA) [6], the recovery 
time and therefore maximum print frequency of the inks being 
jetted is often overlooked. 

Presented here is a new measurement technique using the 
Piezo-Axial Vibrator (PAV) where the relaxation profile of an 
ink can be measured in response to a step-strain, allowing for 
the expected channel recovery time to be predicted. The 
extremely low sample volume required and instant result 
feedback also allows for rapid formulation development 
targeting reduced recovery times, while printhead manufacturers 
and integrators can screen inks for suitability with high speed 
digital presses. 

Piezo-Axial Vibrator 
The PAV consists of active and passive piezoelectric 

elements bonded to a 20 mm diameter circular metal plate, with 
a top cover bolted in position. A calibrated spacer is used 
simulate an inkjet channel of the desired width. A schematic 
view is presented in Figure 1. During operation, the active 
element is driven by a signal generator, while the response from 
the passive element is measured with a suitable data acquisition 
device. 

In this new technique, the active element is driven by a low 
frequency square wave (approximately 5 Hz) from an Arbitrary 
Waveform Generator (AWG) with the total step voltage set to 4 
V. The response from the passive element, in the region of 0.15 
V, is recorded using an oscilloscope. The 4 V input signal was 
chosen to give a total deflection of the PAV sample plate 
(Figure 1d) of 5-10 nm to match the deflection of the walls in a 
printhead under standard operating conditions. 

The results presented below were obtained using a 
Picoscope 2204A USB-based oscilloscope with a built-in AWG 
(Figure 1, top left), thus driving and reading from the same 
equipment with no additional electronics or external power 
supply required. The low voltage and nanoscale displacement of 
the PAV means that the drive signal can be continuously active 
such, that the results can be obtained as soon as the top cover is 
bolted in position, with the oscilloscope trace exported in CSV 
(comma separated values) format for further processing. 

 

 

 
Figure 1. Top: Photograph of equipment used showing combined USB 

oscilloscope and AWG (left) and Piezo-Axial Vibrator (right) with centimetre 

ruler for scale. Bottom: Cross-section schematic of Piezo-Axial Vibrator 

showing a) top cover, b) calibrated spacer foil, c) fluid sample, d) metal 

plate with overflow gutter, e) active piezo element, f) passive piezo 

elements, g) temperature-controlled chassis casing. 

 
 

g f e

d

c 

b b a

f

264 © 2016 Society for Imaging Science and Technology

https://doi.org/10.2352/ISSN.2169-4451.2017.32.264
©2016; Society for Imaging Science and Technology



 

For fluids with non-ambient operating temperatures such as 
UV-curable inks designed to jet at 45 °C, a heat exchanger 
jacket can be included to maintain a constant, controlled 
temperature of the metal sample plate. 

Data Processing 
The response for commercial inks generally returns 

completely to rest after 100 to 200 ms despite the constant 
application of the active input signal, however there is a high 
frequency ‘transient plateau’ within the first 400 µs after the 
initial peak, where the first-order oscillations from the initial 
step-strain decay down to the background relaxation of the PAV 
equipment itself (see Figure 2). The ink is considered to have 
relaxed sufficiently for the next firing event when this transient 
plateau has been reached. This transient plateau can also be 
calibrated using a “blank” measurement to remove the long-
scale drift of the PAV.  

 

 
Figure 2. Main graph: Full relaxation profile showing long-term relaxation 

of the PAV actuator in the passive response (left axis) while active drive 

signal remains constant (right axis), with the area of interest for step-strain 

relaxation highlighted. Inset: Expansion of area of interest showing the 

transient plateau after the initial peak in the microsecond timescale. 

 The raw data exported from the oscilloscope were plotted 
starting at the maximum peak response and a relaxation 
threshold is set, below which the ink can be considered to be 
relaxed and the transient plateau reached. This threshold can be 
calibrated by comparing the resulting relaxation times for a set 
of reference inks with a known maximum reliable printing 
frequency in a real printhead, and accounts for background 
equipment ‘ringing’ effects. 

Commercial Ink Results 
Relaxation times were measured with a range of different 

inks of various families; UV-curable, volatile solvent and 
ceramic glaze (Table 1). For UV and Solvent inks, two different 
manufacturers were tested, as well as an additional solvent ink 
with a higher viscosity. The UV-curable and ceramic inks were 
all tested at 45 °C to match the recommended operating 
conditions, while the solvent inks were measured at 35 °C on the 
assumption that such inks would be loaded at room temperature, 
but then heated above ambient by the actuator during operation. 

 
 
 
 
 
 

Table 1. List of commercial inks tested 

Ink T 
[°C] 

ρ 
[g/cm³] 

σ 
[mN/m] 

η 
[mPas] 

UV Mfg. 1 45 1.08 21.7 16.1 
UV Mfg. 2 45 1.09 22.4 9.0 
Solvent Mfg. A 35 0.96 23.8 8.9 
Solvent Mfg. B 35 0.94 26.2 8.0 
Solvent High η 35 0.97 24.8 13.5 
Ceramic 0.6 µm D90  45 1.19 28.7 12.6 
Ceramic 1.2 µm D90 45 1.44 30.4 18.9 
Ceramic Aqueous 45 1.40 33.4 19.4 

 
The two UV-curable inks show different relaxation 

profiles, with the oscillations for ‘Manufacturer 1’ (Figure 3a) 
stabilising after approximately 100 µs, while the ink from 
‘Manufacturer 2’ stabilises after 200 µs (Figure 3b). For the 
reference printhead used, this represents a reduction in print 
frequency of 17 % for ‘Manufacturer 2’, however given that this 
relaxation time is fixed regardless of waveform used, the 
changes to the print frequency depends on the length of the 
waveform. 

 

 
Figure 3. Relaxation profile at 45 °C for two UV-curable inks from different 

manufacturers showing a) shorter () and b) longer () relaxation times as 

marked by arrows. 

The differences between the volatile solvent inks measured 
are much less pronounced, with the relaxation time for 
‘Manufacturer A’ only 18 % greater than ‘Manufacturer B’, at 
260 µs vs. 220 µs respectively (Figure 4a). 

Compared to UV inks, solvent inks tend to include higher 
molecular weight polymeric components such as resins for 
greater adhesion to the substrate, leading to a higher degree of 
elasticity (0.03 % vs. 0.015 % for UV-curable). It is likely that 
this elasticity means that more energy is absorbed from the step-
strain, requiring longer to dissipate during the subsequent 
relaxation. 

A further solvent ink from ‘Manufacturer A’ modified to 
increase the viscosity shows a dramatic reduction in the 
relaxation time down to 80 µs (Figure 4b). The additives used to 
modify the physical properties of solvent-based inks are usually 
polymeric, thus demonstrating that changes to these polymers 
can have a significant effect on the ink relaxation. 

 

0

2

4

6

8

10

0

20

40

60

80

100

120

0 20 40 60 80 100

A
ct

iv
e 

In
pu

t V
ol

ta
ge

 [V
]

P
as

si
ve

 R
es

po
ns

e 
V

ol
ta

ge
 [m

V
]

Time [ms]

Area of 
interest

Long term relaxation of 
PAV actuator

2.2 2.4Time [ms]

Active drive signal

Transient Plateau

90

100

110

120

130

0 100 200 300

V
ol

ta
ge

 [m
V

]

Time [µs]

'Manufacturer 1'
'Manufacturer 2'

265Printing for Fabrication 2016 (NIP32)



 

 
Figure 4. Relaxation profile at 35 °C for a) two volatile solvent based inks 

from different manufacturers ( and ), and b) a modified ink with higher 

viscosity (), with relaxation times marked by arrows. 

In contrast to the UV-curable and commercial solvent inks, 
the relaxation profiles of all three tested ceramic inks decayed 
smoothly to rest with no additional oscillations, however the 
time taken to plateau was different for each ceramic ink tested, 
with the standard commercial ceramic ink (D90 ≈ 0.6 µm) 
relaxing in 100 µs (Figure 5a) similar to the faster UV-curable 
ink from Figure 3a. The larger particle ink (D90 ≈ 1.2 µm) has a 
slightly longer relaxation time of 150 µs (Figure 5b), while the 
aqueous ceramic ink tested took 200 µs to relax (Figure 5c). 

 

 
Figure 5. Relaxation profiles at 45°C for three ceramic inks showing the 

difference between a) standard (), b) large particle () and c) aqueous () 

formulations, with relaxation times marked by arrows. 

This shows that the trend towards higher colour densities 
from larger pigment particles, and the use of water as a carrier 
solvent to reduce harmful evaporated organic compounds may 
compromise the ability to print at the full line speed unless the 
relaxation time is considered and optimised during formulation.  

The small volume required for the PAV (approximately 0.5 
mL) means that the formulation can be checked in the benchtop 
stage of development before large-scale production, potentially 
reducing material consumption. 

Effects of viscosity and surface tension 
The collected relaxation times shown in Figure 6a show 

that there are significant differences between the different inks, 
however there are also significant differences in the bulk 

physical properties and chemical properties as seen in Table 1. 
The relaxation time was therefore multiplied by the 
dimensionless Ohnesorge number, (Oh) [7] to take into account 
the surface tension (σ), viscosity (η), density (ρ), and the width 
of the actuator (L): 

Oh = √We / Re = η / √ (ρ  σ  L) (1) 

This should ensure that there is a high degree of flexibility 
to match the measurement to the application. 

 

 

 
Figure 6. a) Relaxation times for all inks tested (top), b) Relaxation time 

multiplied by the Ohnesorge number for each ink (bottom). 

Scaling the relaxation times by Oh (Figure 6b) shows that 
the difference seen between UV-curable ink manufacturers is 
almost entirely due to viscosity given that the surface tension 
and density in Table 1 are almost identical. Testing these two 
inks with a real printhead shows that both inks do have very 
similar maximum print frequencies despite the significantly 
different raw relaxation times. 

The difference seen between raw and scaled relaxation 
times for the high viscosity solvent ink shows that even when 
the viscosity is factored out, there are still noticeable 
differences, implying that additional characteristics of the 
formulation are responsible for the differences and not simply 
the increased viscosity. 

The scaled ceramic inks results show that there are clearly 
significant additional interactions, which are most likely entirely 
due to the pigment particles. The higher density for the larger 
particle ink (1.44 g/cm³ vs. 1.19 g/cm³) is likely due to the 
higher solid loading for increased colour density on the printed 
tile, which will result in more energy absorption from the step-
strain. The larger particles will also require more polymeric 
rheology network structures to prevent sedimentation, increasing 
elasticity and therefore increasing the energy absorbed and 
subsequently released during relaxation.  

100

110

120

130

140

0 100 200 300

V
ol

ta
ge

 [V
]

Time [µs]

'Manufacturer A'
'Manufacturer B'
Higher viscosity

100

105

110

115

120

0 100 200 300

V
ol

ta
ge

 [m
V

]

Time [µs]

0.6 µm D90
1.2 µm D90
Aqueous

0

50

100

150

200

250

300

M
fg

 1

M
fg

 2

M
fg

 A

M
fg

 B

H
ig

h 
η

0.
6 

µm
 D

90

1.
2 

µm
 D

90

A
qu

eo
us

UV-curable Volatile Solvent Ceramic
R

el
ax

at
io

n 
tim

e 
[µ

s]

a)

0
10
20
30
40
50
60
70
80
90

M
fg

 1

M
fg

 2

M
fg

 A

M
fg

 B

H
ig

h 
η

0.
6 

µm
 D

90

1.
2 

µm
 D

90

A
qu

eo
us

UV-curable Volatile Solvent Ceramic

R
el

ax
at

io
n 

tim
e 

* O
h 

[µ
s]

b)

266 © 2016 Society for Imaging Science and Technology



 

Testing has shown that this larger particle ink is not reliable 
at the same print frequency at which the smaller particle ink is 
stable, thus showing the unintended consequence of the 
increased particle size formulations, which would not 
necessarily be detectable using conventional measurement 
techniques. 

Model Fluids 
A range of model fluids, including common base solvents 

for inkjet inks, were tested using the new PAV technique over a 
range of temperatures to further investigate the effects of 
viscosity, surface tension, and molecular mass: 

  
 Water 
 Propan-2-ol 
 Ethylene glycol 
 Propylene glycol methyl ether (PM) 
 Dipropylene glycol methyl ether (DPM) 
 Dipropylene glycol methyl ether acetate (DPMA) 

 
To speed up analysis and more reliably obtain the 

relaxation time, a script was created that identifies all of the 
peaks and any troughs in the relaxation profile, then fits an 
exponential curve to both by least squares minimisation to create 
a “decay envelope”. The relaxation time was then taken as the 
point at which the decay envelope had reached 10% of the 
envelope size at the maximum peak response. Figure 7 shows 
the example relaxation profile, decay envelope, and relaxation 
time for DPMA at 25 °C. 

 

 
Figure 7. Example relaxation profile for Dowanol™ DPMA at 25 °C, 

aligned to the maximum peak response, with decay envelope curves fitted 

and 10% relaxation threshold marked. 

Plotting the relaxation times for all fluids tested for the 
range of temperatures (Figure 8) shows that there are some 
significant vertical offsets between the fluids, while in all cases 
the relaxation time increases as the temperature increases, as 
expected given the linked decrease in viscosity. This clearly 
demonstrates the need to account for the base physical 
properties of the test fluids as too many parameters are changing 
at once. 

 

 
Figure 8. Relaxation times for test fluids over a range of temperatures 

showing significant differences between the fluids due to the varied bulk 

physical properties. 

It is better, therefore, to plot the relaxation time against the 
inverse Ohnesorge number in order to compensate for the bulk 
physical properties changing: 

 

 
Figure 9. Relaxation Time vs. the inverse Ohnesorge number, with region 

expanded in Figure 10 highlighted 

The plot in Figure 9 shows that when the bulk physical 
properties are accounted for, most of the fluids follow the same 
overall trend, except for DPM, which has a lower relaxation 
time despite having similar Ohnesorge numbers (Figure 10).  

 

 
Figure 10. Relaxation Time vs. 1/Oh expanded to show the differing 

relaxation times for DPM and DPMA with similar Ohnesorge numbers to 

propan-2-ol and PM in the same region. 
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The Ohnesorge number only factors in the bulk, static 
properties of the fluids, meaning that any dynamic effects such 
as elasticity and the intermolecular interactions from functional 
groups would need to be considered and terms for these 
properties included in the dimensionless number expression. 

The fluids tested here are all base solvents and do not take 
into consideration the effects from the addition of polymeric 
additives. Additives such as surfactants, dispersants, and resins 
could explain why the commercial inks have such pronounced 
differences compared to the model fluids tested here. 

Conclusion 
We have developed a new measurement technique 

exploiting the Piezo-Axial Vibrator to measure the relaxation of 
an ink in the microsecond timescale in response to an applied 
step-strain. This new technique was used to measure the 
response of a range of commercial inks, with the relaxation 
times identified and scaled by the Ohnesorge number.  

These results showed that there are different relaxation 
times from different ink types, even when the bulk physical 
properties have been taken into consideration, which can be 
explained by the unique chemical compositions of each ink. 
Solvent inks, for example, have a higher proportion of long-
chain polymeric additives such as resins that increase the 
elasticity, while relaxation times of ceramic inks can be 
dramatically changed by the particle interactions as a 
consequence of the high solid loading and support networks to 
reduce sedimentation. 

Measurements with model fluids show that the bulk 
physical properties of the base solvents cannot fully account for 
the differences in relaxation times, with additional effects from 
functional groups and molecular interactions resulting in 
detectable differences in the relaxation times even when the 
fluids have the same Ohnesorge number. 

The threshold for the ‘transient plateau’, as well as the 
characteristic length in the Ohnesorge equation can be calibrated 

for the printhead and intended application, meaning that this 
new measurement technique can be applied to a wide range of 
scenarios, while the rapid rate of data acquisition and extremely 
small sample volume required will benefit benchtop-scale ink 
formulation. 
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