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Abstract

The rapid advances in the display and mobile communi-
cation technologies have profoundly challenged the traditional
analog high-speed printing press as well as the still-evolving dig-
ital printing technology in delivering information to consumers.
While the mobile technologies are very efficient to provide instan-
taneous feed of current affairs to consumers, printing on varieties
of substrates beyond plain paper is still irreplaceable to market-
ing, packaging and additive manufacturing in the real world ap-
plications. When printing on nonwhite substrates such as glass
and metallics, white colorant is often required along with the
other primary colors to properly reproduce the intended color.
In this paper, we will introduce a digital color control algorithm
that enable white printing capability while satisfying the con-
straints of simultaneously achieving optimal image quality and
minimal total cost of consumption.

Introduction

The rapid advances in the display and mobile communica-
tion technologies, such as smart phones and virtual/augumented
reality headsets, has profoundly challenged the traditional ana-
log high-speed printing press as well as the still-evolving digi-
tal printing technology in delivering information to consumers.
While the mobile technologies are very efficient in providing an
instantaneous feed of current affairs to a broad audience with
little marginal cost, printing on varieties of substrates besides pa-
per is still vital to fulfill the need for marketing, packaging and
on-demand manufacturing in the real world. With the advent of
digital printing technology that enables mass customization, the
demand for short-run and high image quality applications, for ex-
ample, photobook and digital packaging, has risen considerably
in recent years. When printing on non-white substrates, such as
transparent and metallic material, white colorant is almost always
required along with the traditional cyan, magenta, yellow and
black primary colorants to properly reproduce the intended color.
One of the critical components in digital packaging is the ability
to precisely deposit various amounts of white colorant on flexible
substrates with a nonwhite background, to achieve correct color
appearance. In this paper, we will propose an optimized color
rendition algorithm with a predefined color channel sequence us-
ing the new KODAK NEXPRESS White Dry Ink on the Kodak
NexPress digital press. While the selected imaging formation is
an electrophotographic printing process, the proposed algorithm
can be easily extended to other printing processes such as drop-
on-demand and continuous inkjet technologies.

In conventional printing, white colorant is usually deposited
uniformly first on the top surface of the intended substrate before
the other primary colors to provide white opaque backing and
ensure proper color rendition. The same constraint continues to
persist to the color management workflow in the digital print-
ing technology, where the color definition of the corresponding
media white point plays a significant role in color interpretation
as described in the latest International Color Consortium(ICC)
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profile specification [1, 2]. As a result, this constraint will im-
pose the printing sequence of white colorant to be either at the
beginning or at the end of the colorant deposition process, de-
pending on the intended printing architecture. Secondly, since
some primary colors, such as black, usually exhibit similar opac-
ity as the white colorant, it is possible to reduce the amount of
white colorant by considering the amount of other primary col-
orant laydown composition, similar to traditional black compo-
nent replacement strategies, (i.e. UCR/GCR) which provides a
controlling mechanism to optimize the performance of a printing
system in terms of stable neutrality, color saturation and image
artifact reduction [1, 3, 4, 5, 6]. Furthermore, if the intended
substrate has a metallic appearance, complete coverage of the
targeted imaging area with opaque white colorant will also elim-
inate the metallic effect provided by this special substrate, which
is usually undesirable. Finally, it would be much simpler for print
service providers (PSP) to switch between the normal paper sub-
strate and the substrate with special effects without the need to
create two different print files containing different white color
image layers. This will greatly encourage quick adoption of the
white Dry Ink into their existing workflow.

We will first describe the technical challenges and con-
straints to be imposed in the imaging process incorporating white
colorant. An optimized color control algorithm is proposed to
demonstrate that it is possible to achieve these objects by cre-
ating a devicelink ICC profile connecting between the normal
CMYK device color space to the CMYK+White device color
space [7, 8, 9]. By implementing this methodology, high-quality
images can be printed on colored, transparent and metallic sub-
strates while optimizing the amount of white toner necessary for
such applications.

Rendition Constraints

A"“"—'— Non-White Substrate

Figure 1.  Configuration I: Nonwhite Substrate with White Colorant at the

bottom

Figures 1 and 2 provide simple illustrations of how light in-
teracts between substrate and colorants with the white colorant
being both at the bottom and on the top of the primary colors,
respectively. Figure 1 represents a standard practice of first lay-
ing down a uniform layer of white colorant in the image area.
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The substrate influence on perceived color, By, is largely blocked
by the white colorant layer, while {A;,A;,A3,A4} depict indi-
vidual contributions of the subtractive color mixing model from
the white substrate, cyan, magenta and blue bichrome respec-
tively and closely mimics that on a standard white substrate [10].
However, when the white colorant resides above the non-white
substrate and other primary colorants, the color mixing model
becomes much more complicated as shown in Figure 2. Besides
Bi, the non-white substrate exerts its impact on the perceived
color through multiple light penetration and scattering demon-
strated by B, and B3. Nonetheless, the traditional definition of
Media White Point is provided by A; as opposed to By on white
substrate.

MNon-White Substrate
Cyan

Figure 2. Configuration Il: Nonwhite Substrate with White Colorant on top

Although it is straightforward to simply implement the first
configuration when printing with white colorant and adopt the
standard color management workflow with very little modifica-
tion, a color rendition algorithm adjusting the light contribution
from {By,By,B3} relative to {A],A,A3}, which is the focus of
this paper, will simplify the printing workflow, reduce the to-
tal cost of consumption, and enhance the intended visual effect
with speciality substrates. For example, it is a common practice
to impose a maximal Total Area Coverage (TAC) limitation to
improve the reliability of the printing process and minimize the
potential image artifacts such as mottle, ink bleed and hot/cold
offset. Any attempt to reduce the coverage of the white col-
orant will result in the scenario similar to that in Figure 2. Fur-
thermore, {B1, B>, B3} contain the intended visual effect beyond
the diffused color perception when using speciality substrate and
should be maximized while reproducing the target color.

The light mixing model detailed previously leads to the fol-
lowing constraints in color rendition:

e The media white point in the printer device color space
should correspond to 0% coverage of all primary colors and
100% coverage of white colorant.

Configuration I The coverage of white colorant at the
D,yqx point of each primary color should be 100%.

Configuration II The coverage of white colorant at the
D4y point of each primary color should be 0%.

e If minimal light contribution from the nonwhite substrate is
required, maximizing the black component replacement is
the optimal solution.

o If the light contribution from the nonwhite substrate is pre-
ferred, a black component replacement strategy is chosen to
balance the need between image quality and printing pro-
cess stability.

Proposed Algorithm

While researchers have proposed various color rendition al-
gorithms to incorporate white colorant into the standard four-
color printing process [11], the rendition constraints described
in the previous section can be imposed directly into the printer
device color space as alternative to the Profile Connection Space
(PCS) inside an ICC profile [1]. For instance, the standard defi-
nition of the Media White Point of a printer output ICC profile is
the CIEXYZ measurement on the associated substrate areas with
no colorant coverage and complete von Kries chromatic adapta-
tion is assumed when converting from Relative Colorimetry to
Absolute Colorimetry [12]. While this color appearance model
usually works well on white, off-white and light gray substrates,
the discrepancy between the visual assessment and relative col-
orimetric measurement begins to grow on color substrates. As a
result, a devicelink ICC profile approach is proposed to directly
connect from a device CMYK source color space to the device
CMYK+White destination color space.

We will first decompose the problem into two independent
components relating to a nonwhite/speciality substrate: material
property and embedded color/special effect. The material prop-
erty, ]_‘;,1, influences the image formation with primary colorants,
CMYK, where the reflectance spectrum of the basic substrate is
flat:

Fn(e,m,y,k) = we(Ale,m,y, k), (1

where y(-) is the relative reflectance spectrum in the logarith-
mic transformed space, W, and A is the wavelength of the re-
flected light. The embedded color/special effect, y;(4), pro-
duces a global bias component in . According to the Kubelka-
Munk theory, the linearity of the color mixing behavior in ¥
is largely satisfied [13]. As a result, the measured relative re-
flectance spectrum from the nonwhite/speciality substrate, Y,
can be expressed as follows:

Va(A) = We(Ale,m,y, k) + s (4). @)

Since the white colorant is on the top in Configuration II, y,(A)
is modified by the layer of white colorant as follows

Va(2) = 8(Wa(R)) = g(We(A) + ys(2)) €)

Where g(y.(1)) = w:(A). The objective is to minimize the per-
ceived color difference between y,(A) and (1) at each pixel
location (u,v):

min [y (2) - Ya(2)| @

Based on the Neugebauer equations and color dot-overlap anal-
ysis, we can dichotomize the colorant coverage at each pixel lo-
cation (u,v) via a probabilistic model [10]:
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where P, is the probability that at least one primary colorant and
substrate occur and P is the probability with only the presence
of substrate. Therefore, Equations 2 and 3 can be rewritten as
follows:

vi" (A) = By (A) + B (We(A) + w5 (1)) ™

W(A) = ey (1))
= P(ws(A) + P e (We(A) +ws(R)) - (8)
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where (1) is the logarithmic relative reflectance spectrum of
the mixed colorants with 100% area coverage. As a result, the
original minimization problem in Equation 4 can be expressed as
following:

min P g(ys (A + "1 We(A) — 8(We(2) +w5(2))[9)

where each term can be minimized independently. The first term
is minimized if g(-) reaches its minimum, which means that the
coverage of white colorant is 100%. As described in the first
constraint, the second term is minimized if the white coverage is
100% in Configuration I and 0% in Configuration II. Thus, the
optimal solution of white colorant coverage based on the theo-
retical analysis is 1 at every pixel location in Configuration I and
P at the pixel location (u,v) in Configuration II. However, the
white colorant is imaged through the digital halftone formation
process in practice instead of a uniform layer of white colorant
assumed in the Kubelka-Munk theory, which results in lower effi-
ciency in blocking y;(A). Hence, the actual white colorant cov-
erage, w(u,v), is

w(u,v) = K" +E(RY). (10)
&(+) is experimentally determined with three constraints: &(-) >
0,£(0)=0,and £(1) =0.

The main source of cost associated while solving the min-
imization problem (9) in Configuration Il comes from the sec-
ond term, ||W.(A) — g(Pe(A) + ws(4))||, and it is controlled by
the ratio V/i (&);. As explained in the color rendition constraints,

W:(A) can be modified by different strategies in black compo-
nent replacement. However, since it is impossible to physically
separate the colorant and/or special effect from the substrate, the
proposed approach is to identify a generic ICC output profile of a
substrate with white background and construct a devicelink pro-
file connecting two printer CMYK color spaces to enforce dif-
ferent black replacement strategies [14].

Experimental Results

Table 1: Media White Point in CIELAB without white Dry Ink
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Figure 3. Magenta ramp based on proposed rendition algorithm

Table 2: Media White Point in CIELAB with white Dry Ink

Paper CIELABL* | CIELAB a* | CIELABb*
Index

Paper 1 90.6 -0.5 13.1

Paper 2 85.1 14.7 6.4

Paper 3 86.3 12.8 -0.1

Paper 4 87.2 -8.6 3.1

Paper 5 84.8 -5.9 -4.3

Paper 6 79.5 1.3 1.4

Paper CIELAB L* | CIELABa* | CIELAB b*
Index

Paper 1 90.7 -3.5 41.8
Paper 2 73.5 38 27.7
Paper 3 79.7 271 -0.1

Paper 4 81.8 -19.3 10.7
Paper 5 76.4 -11.41 -8.9

Paper 6 571 10.9 229

Six color substrates are tested in the experiment and their
Media White Point in CIELAB color space are listed in Table 1
with hue angles evenly distributed. After depositing 100% cov-
erage of white Dry Ink in one pass, the fabricated Media White
Point is summarized in Table 2. It clearly demonstrates that the
variations in L* and chroma are significantly reduced. In com-
parison, while the Media White Point of the standard Grade 1
paper is (95,0,—2) in the CIELAB color space, the b* value
of uncoated smooth paper with optical brightener agent (OBA)
could reach beyond —9. Therefore, it can be argued that the
fabricated Media White Points are largely acceptable except for
Paper 2 with high chroma. Paper 6 is the darkest paper with
brownish tint, of which color is close to a brown package sub-
strate. The fabricated Media White Point is nearly neutral with
relatively high L*.

Printing for Fabrication 2016 (NIP32)

Besides the fabricated Media White Point, the tone scale
smoothness and color gamut are essential to demonstrate the va-
lidity of the proposed image rendition algorithm with white Dry
Ink under Configuration Il. Figure 3 shows the magenta ramp
with 0%, 25%, 50%, 75%, 100% white Dry Ink coverage and
the final magenta ramp when applying the proposed rendition al-
gorithm and Figure 4 illustrates all four primary color ramps on
Paper 6 and those on the Grade I standard paper in absolute col-
orimetry. Figure 5 shows that the resulting primary color ramps
printed on silver substrate follow the same trajectories in the a*-
b* color plane as those on the Grade I standard paper, which
indicates that the perceived color rendition between the standard
white substrate and silver substrate using the proposed algorithm
are very similar. Figures 6 to 9 compare the effectiveness of the
proposed image rendition algorithm with white colorant under
Configuration I1. Even in the case of Paper 2 with the least neu-
tral fabricated Media White Point, Figure 8 still shows significant
improvement in terms of perceptually acceptable color rendition.

Paper-6 vs Standard Paper in Absolute Colorimetry
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Figure 4.  Fabricated primary ramp comparison between paper 6 and

standard white substrate in absolute colorimetry



Silver Paper vs Standard Paper in Relative Colorimetry
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Figure 5. Fabricated primary ramp comparison between silver paper and
standard white substrate in relative colorimetry

Figure 6. Digital packaging application comparison on Paper 6 with white
colorant in Configuration Il
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Figure 7. Digital packaging application comparison on Paper 6 with white
colorant in Configuration Il

Conclusion

An optimized image rendition algorithm with white col-
orant is devised to reproduce perceptually pleasing color rendi-
tion on nonwhite and speciality substrates. A set of substrate
with diverse hue and chroma selection is tested to demonstrate
the effectiveness of the proposed algorithm. This automatic
CMYK+White workflow for different white configurations sig-
nificantly reduces the burden of graphic designers and press op-
erators. Consequently, it will empower digital printing technolo-
gies to fulfill new applications such as digital packaging and
short-run marketing by incorporating wider selections of non-
white and speciality substrates.
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