
 

Development of wound dressings for biofilm inhibition by 

means of inkjet printing 

Mirja Palo1,2, Jeannette Öhman1, Terhi Oja1, Niklas Sandler1; 1Åbo Akademi University; Turku, Finland; 2University of Tartu; Tartu, 

Estonia 

 

Abstract 
Printing technology has given new opportunities for the 

fabrication of pharmaceutical dosage forms. The utilization of 

inkjet printing allows obtaining drug delivery systems with 

controlled and precise dosing of low dose medications. The 

healing process of wounds is hindered due to the biofilm 

formation by the bacteria. Therefore, effective antimicrobial 

treatments are crucial in wound care. 

In this study, the use of inkjet printing technology for the 

fabrication of antibacterial drug formulations for topical 

applications was investigated. The customized formulations 

with antibiotic gentamicin sulfate printed on medical grade 

silicon sheeting were prepared. The results showed that the 

inhibition of biofilm formation was achieved with all the 

printed formulations in pre-exposure assay to Staphylococcus 

aureus on static method agar plates.  

This study provided insight into the feasibility of inkjet 

printing for the fabrication of topical drug delivery systems. 

By adjusting the dose and drug-covered area in the wound 

dressings, inkjet printing could provide the flexibility that is 

needed to improve the personalization of wound care.  

Introduction  
In recent decades, the research focusing on the application 

of inkjet printing for the fabrication of pharmaceuticals has 

increased [1]. Printing could be feasible in producing dosage 

forms that are tailored according to the individual needs of the 

patient [2]. Compared to the fabrication of conventional solid 

dosage forms this approach as many advantages including the 

decreased number of manufacturing steps and the alternatives 

for designing formulations with versatile dosage, drug release 

profile and drug combinations [3]. The flexibility of this 

method lies in the fact that the properties of the dosage form 

can be tailored by modifying the parts of the formulations (e.g. 

substrate, ink, coatings) and/or the process parameters (e.g. 

printing pattern, droplet volume, drying time) separately. 

Inkjet printing is suitable for depositing precise doses of low-

dose medications on a pre-defined location on a substrate 

[2,3,4]. The drug compounds can be dissolved or dispersed in 

a suitable inkbase solution. 

Previously, the printed formulations have been designed 

mainly for oral administration [2,5]. For that application, both 

thermal and piezoelectric inkjet printing methods have been 

used to apply a well-distributed layer of drug-loaded ink onto 

the surface of a substrate [2]. The flexibility of the dosing can 

be achieved by using inks with different drug concentrations 

[6], varying the printed area [7], resolution [7] or the number 

of printed layers [8]. Furthermore, the selection of substrates is 

important, since, for example, porous substrates have been 

suggested to be beneficial for enhancing the stability of the 

solid state of the drug [4].  

Biofilms are structured communities of bacterial cells that 

are firmly surrounded by a matrix of extracellular polymeric 

substance (EPS) that acts as a protection layer against 

biocides, antibiotics and host immune response and as an 

adhesion mechanism [9,10]. The infectious biofilms are 

formed from planktonic bacteria on the surfaces of biomedical 

devices or in human tissue [10]. The antibiotic therapies are 

generally inefficient in eliminating bacteria in mature biofilms, 

therefore, strategies for preventing biofilm formation and 

obtaining a bactericidal effect in the biofilm growth state are 

preferred [10]. 

There are several types of wounds and a variety of wound 

dressings with different properties [11]. Especially chronic 

wounds are a widely recognized health problem [10]. The risk 

for the development of chronic wounds is increased for 

patients with diabetes and cardiovascular diseases [10]. 

Microbial control in wound care is crucial during the wound 

healing process, because of the biofilm formation by the 

bacteria that interferes with the healing process [12]. A study 

by James et al. (2008) showed that the presents of biofilms in 

chronic wounds was 10 times higher compared to acute 

wounds [13]. The predominant species identified in these 

wounds were Staphylococcus, Pseudomonas and Enterococcus 

[13]. Thus, treatments that are effective against biofilm 

formation are greatly needed to reduce the occurrence of 

chronic wounds [12].  

Wound dressings are divided into several categories 

depending on their use (occlusive, absorbent, adherence), 

material (polyurethane, alginate, collagen, silicone) or physical 

form (film, foam, gel) [14]. These dressings are required to 

support one or more aspects of the wound healing process 

[11,14]. Local drug delivery increases the therapeutic effect at 

the wound site and also decreases the risk for systemic side 

effects [11]. However, the disadvantages include an increased 

risk for systemic exposure when applied on large areas, dosing 

challenges, potential skin reactions and interference with the 

wound healing process [15]. Nevertheless, various 

therapeutically active agents can be used to promote wound 

healing – topical disinfectants (e.g. ethanol), antiseptics (e.g. 

hydrogen peroxide, chlorhexidine) and bioactive components 

(e.g. antibiotics, anti-inflammatory drugs) [10]. By 

incorporating an active pharmaceutical ingredient, for instance 

an antibiotic, into/onto a wound dressing, infections can be 

fought or prevented by inhibiting the biofilm formation in the 

damaged tissue [10,11]. 

In this study, the exploitation of inkjet printing in the 

preparation of topical formulations with antimicrobial agents 

was investigated [16]. Model formulations were prepared by 

printing an antibiotic gentamicin sulfate onto a medical grade 

substrate. The effect of the printed drug delivery systems on 

the biofilm inhibition was evaluated by a static biofilm 

method. According to our knowledge there are no previous 

reports on the use of inkjet printing for the manufacturing of 
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wound dressings. Due to its flexibility this approach could 

improve the personalization of wound care by adjusting the 

dose and drug-covered area in the wound dressings.  

Materials and Methods 

Materials 
A broad spectrum antibiotic, gentamicin sulfate (Sigma-

Aldrich, China) was used as model drug compound (Figure 1). 

Propylene glycol (PG) (99.5%, SAFC, Germany) and purified 

water (Milli-Q) were used to prepare the ink formulations. A 

non-sterile medical grade silicone sheeting (BioPlexus, USA) 

and standard copier transparency film (Folex, Switzerland) 

were used as substrates.  

Inkjet Printing 
Inks with two different drug concentrations, 3 µg/µl and 

12 µg/µl, were prepared by dissolving gentamicin sulfate in 

the inkbase consisting of a mixture of PG and water 

(50:50 vol%). 

A CAM 200 contact angle goniometer (KSV Instruments 

Ltd, Finland) was used for surface tension measurements and 

the rheological properties of the inkbase were characterized 

using a Paar Physica MCR 300 modular compact rheometer 

(Anton Paar GmbH, Germany) with a double-gap concentric 

cylinder geometry.  

A PixDro LP 50 (Roth & Rau, the Netherlands) 

piezoelectric inkjet printer with a Spectra SL printhead (128 

nozzles, Ø 50 µm) was used for printing. The ink formulations 

were filtered through sterile 0.2 µm cellulose acetate syringe 

filters (Whatman, Germany) prior to printing. The printing 

was performed at ambient conditions (temperature of 

20-21 °C, relative humidity of 20-25%). One nozzle was used 

for the ink deposition at a resolution of 500 dpi according to 

the tailored patterns (Table 1). For further analysis, the printed 

samples were cut out into square-shaped samples of approx. 

1 cm × 1 cm regardless of the pattern. 

Table 1. The design of the printed formulations. 

Pattern 

   

Printed area 1 cm2 0.2 cm2 

Manually 

pipetted 

dot 

Ink 

concentration 

3 µg/µl 
12 µg/µl 

12 µg/µl 

Printed 

layers 
1 layer 5 layers - 

Characterization of the printed formulations 
Visual characterization of the printed formulations was 

performed by optical microscopy (Evos XL, AMG, USA).  

The solid state properties of the printed gentamicin 

sulfate were evaluated by an attenuated total reflectance 

Fourier transform infrared (ATR-FTIR) spectroscopy 

(Spectrum Two, PerkinElmer, UK) and a differential scanning 

calorimetry (Q2000 DSC, TA instruments, USA).  

 

Figure 1. Molecular structure of gentamicin sulfate. 

Drug quantification  
The gentamycin sulfate content in the printed 

formulations was determined by a colorimetric assay [17]. 

Ninhydrin powder (≥95%, Sigma-Aldrich, India), potassium 

phosphate monobasic powder (99.5-100.5%, Sigma-Aldrich, 

Germany) and sodium hydroxide pellets (Ph.Eur., Sigma-

Aldrich, Germany) were used for preparing the reagent 

solutions. An ultraviolet-visible spectrophotometry (Lambda 

25, PerkinElmer, USA) at 400 nm was used for drug detection.  

First, the samples were immersed in 1ml of pH 7.4 buffer 

solution and incubated at room temperature for 24 h. After that 

900 µl of the sample solution was transferred into the reaction 

tubes and 270 µl of 1.25% ninhydrin solution was added (5:1.5 

vol% ratio of gentamicin solution and ninhydrin solution). The 

reaction was conducted in a pre-heated oven at 95 °C for 30 

min and stopped by placing the samples on an ice bath. The 

content of the printed formulations was determined in 

triplicate. The calibration was obtained in a gentamicin sulfate 

concentration range of 2.5-50 µg/µl in the same reaction 

conditions.  

Biofilm inhibition studies of the printed 
formulations 

The efficacy of the drug was determined against a 

methicillin-susceptible strain of Staphylococcus aureus (ATCC 

25923). An adapted version of a previously described method 

was performed for culturing biofilms on tryptic soya agar 

plates [18]. The details of the pre-exposure assay with 

gentamicin sulfate against S. aureus on static biofilm method 

plates has been described by Öhman [16]. The dose-response 

curve was established by conducting a pre-exposure assay 

against S. aureus with different range of concentrations. The 

appropriate amount of gentamicin in the printed samples was 

determined based on the dose-response trials, in order to 

obtain a clear and steady biofilm inhibition.  

The printed cross-pattern and full area samples were 

tested for their inhibitory effect on biofilm formation on static 

method agar plates. The biofilm was cultured by pipetting a 

bacterial suspension (1:10 vol% ratio of S. aureus and tryptic 

soy broth inoculum) onto a sterile filter paper (Whatman, 

Germany) placed on top of the agar plate. The printed samples 

and the control samples (borosilicate glass coupons with and 

without gentamicin) were placed on top of the inoculated filter 

paper with the treated or printed side facing a filter paper. The 

effect of printed pattern and dose on the inhibition level was 

determined by viable cell counts analysis of the printed 

samples after a 2 h or 24 h incubation period in a humidified 

incubator at 37 °C and 96% relative humidity. Three or four 
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biological replicates were analyzed per sample. Samples 

printed with the drug-free inkbase were used as controls. 

GraphPad Prism v. 5.00 for Windows (GraphPad 

Software, U.S.A.) was used for the calculations and statistical 

analysis.  

Results 

Characterization of the printed formulations 
The physical properties of the ink were characterized to 

predict the printability of the ink solution. The amount of the 

viscosity modifying agent PG in the inkbase solution was 

selected based on the rheological properties. The measured 

surface tension (44.0 mN/m), viscosity (6.53 mPa·s), and Z 

value (7.33) of a 50:50 vol% mixture of PG and water was 

shown to be most suitable for printing. The Z value was 

determined based on an approximate to the Navier-Stokes 

equation (1) as the inverse (Z) of the Ohnesorge number, 

where d is the nozzle diameter (m), ρ is the density (kg/m3), γ 

is the surface tension (N/m) and η is the viscosity (Pa·s). The 

Z value within the range of 4 ≤ Z ≤ 14 has been suggest to the 

be suitable for inkjet printing [19]. 

 

Z = (dργ)½/η (1) 

 

The microscopic imaging (Figure 2) demonstrated that the 

ink was distributed onto the substrate evenly with a single 

printed layer. Due to the limited absorption capacity and the 

hydrophobicity of the substrate, printing of several layers 

(cross-pattern samples) resulted in merged droplets and a 

higher variation in droplet sizes. 

Figure 2. Microscopic images at 4.0x magnification of gentamicin sulfate 

printed samples with a single layer (left) and 5 layers (right) on silicone. 

Bar = 1000 μm. 

Despite the low drug amount, characteristic absorption 

peaks at 1622 and 1525 cm-1 for gentamicin sulfate were 

detected for the printed samples on the ATR-FTIR spectra. 

Furthermore, the DSC analysis demonstrated the thermal 

stability of the gentamicin sulfate. In the printed samples, the 

DSC was able to detect the melting decomposition endotherm 

for gentamicin sulfate at 242.16 °C. The spectroscopic and 

thermal analysis strongly suggested that the properties of the 

drug were not altered by the printing process. 

The printed drug amount was detectable in the 

formulations printing with a 12 µg/µl ink (Table 2). The 

printed samples on transparency film were used as reference 

because of the inert nature of the substrate. A day-to-day 

variation caused by the optimization of the printing settings 

was seen with the samples printed on silicone. Previously, 

Wickström et al. (2015) reported that the printed drug amount 

per layer decreased when a dose escalation by increasing the 

number of printed layer was applied, indicating that printing a 

low concentration ink in several layers could result in less 

accurate dosing [8]. Here, a very high variation in the cross-

pattern samples (5 layers) was attributed mostly to the 

clogging problems and a consequent inconsistence in the ink 

flow during the printing task. It was suggested that an online 

monitoring of the droplet ejection could be beneficial for 

detecting clogging problems and evaluating the droplet size 

uniformity. 

Table 2. The measured gentamicin sulfate content (µg) with 

relative standard deviation (RSD) in formulations printed with 

12 μg/μl ink.  

Substrate Pattern Content 

(µg) 
RSD 

Silicone Cross-shaped 3.2 ± 2.9 89.5% 

Full area 10.8 ± 3.2 29.5% 

Transparency 

film 

Cross-shaped 12.3 ± 0.6 4.9% 

Full area 11.4 ± 0.5 4.4% 

Antimicrobial properties of the printed 
formulations 

The printed amount per formulations, and thus the used 

ink concentration, was determined beforehand based on the 

exhibited inhibition levels in the dose-response trials. The 

dose-response curve between the biofilm inhibition and the 

drug concentration is shown on Figure 3. The 50% of the 

maximal inhibitory concentration (IC50) of gentamicin was 

estimated at 256 µM (GraphPad Prism software).  The aim 

was to prepare samples that would give a steady > 80% 

inhibition, thus, samples with approx. 10 µg were designed. 

The inhibition percentage of the coupons with 10 μg of 

gentamicin sulfate was 88.43 ± 7.92% (n=3) and the initial 

concentration (671 μM) corresponded to 2.62 times the 

estimated IC50 concentration. 

Figure 3. Dose-response curve demonstrating the % inhibition of S. 

aureus on static biofilm method plates plotted against gentamicin sulfate 

concentration in Mueller-Hinton broth (mean ± SD, n=23).  

The effect of the printed dose and the pattern on the 

antimicrobial properties of the printed formulations was 

studied by determining the inhibition of S. aureus biofilm 

formation after a 2 h and 24 h incubation period. The effect of 

the dose on the biofilm inhibition can be seen in Figure 4. And 

Figure 5 demonstrates the effect of the printed pattern on the 

inhibition levels.  

After a 2 h incubation period the lower dose samples 

showed an inhibition of 61.1 ± 7.3% (cross-pattern) and 69.6 ± 

12.6% (full area). And the biofilm inhibition for the higher 
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dose samples was 95.1 ± 1.2% (cross-pattern), 93.2 ± 8.2% 

(full area) and 66.3 ± 14.5% (dot).  

After 24 h of incubation the biofilm inhibition levels 

remained at 68.5 ± 15.0% (cross-pattern) and 71.5 ± 35.6% 

(full area) for the lower dose samples and at 87.3 ± 7.1% 

(cross-pattern), 87.9 ± 7.4% (full area) for the higher dose 

samples. A noticeable difference in the inhibition was seen for 

the manually pipetted dot samples, where the inhibition 

increased up to 83.6 ± 3.6% after 24h. 

The results showed that the pattern of the printed 

formulations did not affect the biofilm inhibition at higher 

concentrations. It was suggested that the printed pattern/ drug-

covered area might be of significance when low doses of 

antibiotics are used. In Figure 4, a slight difference, though 

statistically not significant, could be seen between the cross-

shaped and full area samples at lower concentrations after 2 h 

of incubation. 

As expected the biggest difference was seen between the 

manually prepared samples (dot) and the printed samples that 

contained the same amount of gentamicin sulfate (Figure 5). 

This was attributed to the significant contrast in the drug-

covered area that is exposed to the bacteria and the diffusion 

rate of the drug in the static analysis settings. 

Figure 4. The reduction in viability counts of S. aureus bacteria after 

2h and 24h incubation shown as inhibition % for formulations printed with 

different concentrations (n=3). 

Figure 5. The reduction in viability counts of S. aureus bacteria after 

2h and 24h incubation shown as inhibition % for formulations printed with 

different patterns (n=3). 

It should be noted that the high deviations in the results 

of the antimicrobial studies were caused by the variable drug 

content (Table 2). The effect of the API in the printed 

formulations remain unchanged after a short storage time 

(1 week) at 8 °C. 

Gentamicin is a fast-acting antibiotic, reaching a 

maximum concentration after an intramuscular or intravenous 

dose after 30-60 min (Tmax) and having a biological half-life 

(T½) of 2-3 h. Therefore, enhancing the efficacy of gentamicin 

by combining with other antibacterial agents or prolonging the 

action by modified-release could be useful.  

Conclusions 
In this study, the model topical formulations with an 

antibiotic gentamicin sulfate were prepared by inkjet printing. 

The effect of the printing pattern on the biofilm inhibition was 

investigated.  

The solid-state characterization of the printed 

formulations indicated that printing process did not alter the 

properties of the drug. The drug content analysis showed that 

the optimization of the printing process affected the day-to-day 

dosing precision. Furthermore, the printing of several layers of 

ink on top of each other limited the visual evaluation of the 

printing quality.  

The printed formulations with approx. 10 μg per 1 cm2 

exhibited over 90% inhibition of biofilm formation already 

after 2 h in pre-exposure to S. aureus irrespective of the 

printed pattern. The rapid effect on the biofilm inhibition has 

shown to be characteristic for the drug. The results from the 

anti-biofilm studies suggested that the printing pattern might 

be of importance when low doses of antibiotics are used.  

In conclusion, this study demonstrates the feasibility of 

inkjet printing as an alternative method for the preparation of 

topical formulations with variable drug content for 

personalized therapy. Thus, additional studies could be 

targeted at exploring the potential of inkjet printing for 

tailoring topical drug formulations for wound care purposes.  
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