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Abstract 

This research involved the examination of pigment-based 
and disperse dye-based inksets applied to polyester fabric by 
textile inkjet printing. Colorimetric data were recorded for each 
color, as well as the mixed colors generated through RIPMaster 
V11 software. Color Table (CTB) profiles were created to 
compare spot colors and International color consortium (ICC) 
profiles were created to evaluate color gamut volumes. Four-
color and seven-color disperse inksets were compared, while 
six-color and eight-color pigment inksets were compared. As 
expected, the additional colors increased color gamuts 
significantly. It was also found that the disperse dye-based 
inkset provided deeper color shades, and excellent wet and dry 
crock fastness properties. However, the light fastness for 
disperse dye-based inksets was not as good as the levels 
obtained using pigment-based inksets. 

Introduction and Background  
Single pass high-speed textile inkjet printers capable of 

printing 70m/min are competitive with rotary screen-printing, 
especially when printing shorter runs or multiple colorways [1-3]. 
These developments provide new market opportunities for U.S. 
Manufacturers as digital printing supports mass customerization 
and quick response. The goal of this larger research project was 
to integrate digital printing with weaving and cut and sew 
methodologies, map an optimal workflow for product design 
and manufacturing. Key components of this program include the 
development and improvement of fabric pretreatment agents [4-

6], evaluation of various colorant sets formulated for Kyocera 
printheads, and optimization of the digital printing process flow. 
Specific studies conducted to date cover 1) the effects of 
pretreatment agents on the application of pigment and disperse 
dye based ink to polyester fabrics for outdoor products requiring 
lightfastness of 500 hours or more and 2) color gamut analysis 
as a function of substrates, colorants and pre-treatment 
chemistries. 

Research Objective and Relevance 
This research project is designed to provide a side by side 

comparison of pigment-based and disperse dye-based inksets on 
a polyester substrate through visual and instrumental 
assessment, including color gamut analysis, wet and dry crock 
fastness, and light fastness, to evaluate their suitability for the 
outdoor textile applications. Findings of this research will help 
support the dot.com, quick response, and short run 
manufacturing models for suppliers of a multinational retail 
corporation and others implementing digital printing 
technologies. 

Experimental Methodology 
An MS JP5Evo equipped with Kyocera print heads was 

used. Print Mode C2 was used because it is most often 
employed in production settings requiring a balance between 
production speed and print quality.  Print mode C2 uses seven 
variable drop sizes (4, 7, 11. 14, 16, 19, and 24); 600x600 dpi, 4 

passes, bi-direction, and the carriage speed is "High. On the JP5, 
there are eight modes (A-H) and three carriage speeds, HQ, 
High, Max (the mode and speed are intrinsically synced). The 
RIP can be set to either uni-direction or bi-direction. Each mode 
has a different droplet range – from 4 to 72.  

RipMaster v11 and Xrite i1Profiler version 1.6.3 software 
were used for calibration and characterization, and for creating 
profiles for the ink and substrate combinations [7]. Analysis of 
color performance and evaluation of the colorimetric values of 
individual inks were measured with an X-rite 2nd generation 
i1iO spectrophotometer. AATCC Test Method 116-2010: 
Colorfastness to crocking and AATCC Test Method 16-2004: 
Colorfastness to light were used to test fastness properties. All 
samples were assessed with a Datacolor SF600X 
spectrophotometer equipped with Xrite Color iControl v9.4 
software.  

Two color profiles were used, a unique CTB profile 
developed by RipMaster for textile spot color prints and the ICC 
profile.  For CTB profiles, a general color gamut model was 
created through Origin software. For ICC profiles, the visible 
color gamut was created and measured using ColorThink Pro 
v3.0.3 software. 

A 7.0 oz/yd2 woven fabric containing 100% spun polyester 
(PET) yarns was prepared for printing by scouring, and a 
resulting wet-pick up of 43% was determined. A pretreatment 
formulated for digital printing on PET fabric was applied using 
Mathis AG model HVF padding equipment. 

The color shades from individual inks and the color gamut 
volumes were compared for four inksets: CMYK and 
CMYKRBV disperse dye-based systems and CMYKRVGO and 
CMYKRB pigment-based systems, where C = cyan; M = 
magenta; Y = yellow; K = black; R = red; B = blue; G = green; 
V = violet, O = orange. DP001 pretreated PET fabric was used 
to print with Inkset L and DP002 pretreated was used to print 
with Inkset F. The later pretreatment contained a photostabilizer 
and anti-migrant. 

The printing process for disperse dye and pigment based 
inks is shown in Figure 1 below. The high temperature heat-
setting process can cause a fabric shrinkage issue. The shrinkage 
ratio depends on the heat-set temperature and duration, 
therefore, a pre-shrinkage step was conducted before 
pretreatment. For disperse dye inks, an additional wash-off step 
is required to remove surface dye that is not fixed to the fabric, 
because it affects the performance of color fastness properties.  
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Figure 1. Printing and testing process used in this investigation. 

Results and Discussion 
Disperse Dye Inkset F 

The Inkset F is a disperse dye-based ink containing dyes 
designed for high lightfastness. The first generation inkset was 
F1, which contained cyan, magenta, yellow and black, and 
second generation inkset F2 contained blue, red and purple as 
additional colors. The color values from the seven inks are 
shown in Table 1, where it can be seen that deeper colors (lower 
L* values) were obtained by applying the pretreatment agent to 
PET. Note for black color that L* value decreased from 32.29 to 
26.22. Similarly, the chroma for each individual color was 
increased, especially for yellow, where the C value increased 
from 64.95 to 80.29. 

Table 1. Individual color values from Inkset F. 

Pretreated PET 

Ink color L* a* b* C 

Cyan 44.69 -15.05 -28.88 31.12 

Magenta 40.31 52.86 18.75 56.08 

Yellow 78.24 3.58 82.54 80.29 

Black 26.22 1.36 -1.27 1.86 

Blue 35.83 3.11 -39.92 40.04 

Red 49.5 56.63 40.36 69.54 

Purple 29.38 25.06 -33.11 41.52 

Untreated PET 

Ink color L* a* b* C 

Cyan 54.09 -18.71 -24.15 30.55 

Magenta 49.51 48.95 11.2 50.21 

Yellow 78.52 0.95 64.94 64.95 

Black 32.29 1.59 -0.46 1.65 

Blue 46.49 -2.44 -32.14 32.23 

Red 54.41 50.37 32.78 60.09 

Purple 39.79 21.92 -32.05 38.82 

By looking at the gamut comparison between Inksets F1 
and F2 (Figure 2), the color gamut increased more in a* and b* 
direction for the Inkset F2, due to the addition of blue, red and 
purple colors. 

 

Figure 2. Color gamut comparison between inksets F1 and F2. 
 

Pigment Inkset L 
The type L pigment inks are among the commercial nano-

scale pigment based inks developed for textile inkjet printing. 
They included eight colors – CMYKRBGO. The first generation 
(L1) contained six colors (CMYKRB) and the second 
generation (L2) contained two additional colors (G and O). A 
DP001 pretreatment was applied to PET before printing. The 
color values obtained are shown in Table 2 and the color gamuts 
generated from CTB profiles are shown in Figure 3. It is clear 
from Figure 3 that inkset L2 covers a larger area in the color 
space, especially in the L* and b* areas, probably due to the 
addition of green and orange components. 

By comparing the colorimetric values of pretreated fabric 
printed with inksets L and F, it can be seen that most of the 
colors in inkset L gave a somewhat lighter color (higher L* 
value) on PET, except for cyan. For black, the L* value from 
inkset L was 29.31 and 26.22 from inkset F, which will deepen 
colors in the overall color gamut. Also, the red and magenta in 
inkset L gave higher a* values (58.96 for red and 57.44 for 
magenta), than a* values from inkset F (56.63 for red and 52.86 
for magenta). The negative b* value for cyan was greater from 
inkset F (-28.88) than the one from inkset L (-46.97). The 
magenta from inkset F gave a positive b* value, which indicated 
yellow character; while the magenta from inkset L gave a 
negative b* value that indicated blue character in this color. 
Generally, the chroma from cyan (45.42) and magenta (58.02) 
was higher from inkset L compared with the cyan (31.12) and 
magenta (56.08) in inkset F. However, the chroma values for the 
other colors were higher from inkset F than inkset L. 

A brief color gamut comparison between Inkset L1 and L2 
was plotted based on CTB profile, which is shown in Figure 4. 
There are some areas in the color space that were better covered 
by L2, such as positive a* area, which represents orange and 
purple colors. 
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Table 2. Individual color values from Inkset L. 

Ink color L* a* b* C 

Cyan 44.03 -2.87 -46.97 45.42 

Magenta 50 57.44 -8.19 58.02 

Yellow 87.4 -10.8 78.3 79.04 

Black 29.31 0.53 1.67 1.75 

Blue 40.19 11.29 -37.27 38.94 

Red 53.54 58.96 28.45 65.46 

Green 68.09 -49.27 14.58 51.38 

Orange 63.93 47.97 54.28 72.44 
 

Figure 3. Color gamut comparison between inksets L1 and L2. 

ICC profiles were also created for L and F inkset pairs, and 
color gamut volumes were measured using Color Think Pro 
software. The gamut volumes for each inkset are shown in Table 
3.  F1 gave the smallest gamut volume while L2 gave the 
largest, which is not surprising since L2 contained the most 
colors in its inkset.  Figure 4 shows the 2D color gamuts in a*b* 
color dimension. The main difference between F1 and F2 was 
the increased gamut in the blue-purple area, since red, blue and 
purple were added in to the inkset. Similarly, the addition of 
green and orange to the L2 inkset increased the color gamut in 
the orange and yellow-green areas. Comparing inksets F2 and 
L2, the disperse dye based inkset (F2) afforded a bluish purple 
component, while the pigment ink (L2) provided a reddish 
purple component. 

Table 3. Gamut volume from the four inksets. 

Inkset Gamut volume 
F1 135,687 
F2 186,533 
L1 152,317 
L2 188,426 

 

 
Figure 4. 2D gamut comparisons for the four inksets. 

Light fastness and crock fastness testing 
To evaluate the color fastness properties of the L and F 

inksets, light fastness was evaluated at exposure levels of 160, 
300, and 500 hours (h) and wet and dry crock fastness were 
measured in warp and weft directions. The rating scale was 1 
(poor) to 5 (excellent), with a minimum rating of 3 acceptable. 

The crock fastness ratings from Inkset F were excellent. As 
shown in Table 4, most of the colors gave a rating of 5, except 
for wet crockfastness for red in the warp direction, which was 
still very good at 4.5.  However, the crock fastness for Inkset L 
was much lower, as shown in Table 6. In this case, the highest 
rating was obtained from green, which was 3; for the others, 
most ratings were around 2.  Overall, these results arise from 
dye penetration into the fiber structure verse pigment occupying 
the surface of the fibers.  Without a strong binder, pigment 
particles are more subject to removal by abrasion. 

The light fastness results from Inkset F are shown in Table 
5 and indicate that color faded appreciably as the exposure time 
increased, with ratings at the 500-h exposure level no higher 
than 2. The highest ratings were generally 2-3 at the 300-h 
exposure level.  As shown in Table 7, however, the light 
fastness ratings from Inkset L were above 3 even after the 500-
hour exposure, except for the orange pigment. Black and 
magenta gave a rating of 4 after 500 h, while cyan, yellow and 
blue gave a 3.5 after 500-h.  Overall, these results reflect the 
particulate structure of organic pigments, giving layers of 
molecules rather than the mono-molecular arrangement of 
disperse dyes inside the fiber.  The latter makes the colorants 
more accessible to photodegradation and the solution is the co-
adsorption of a suitable photostabilizer to facilitate energy 
dissipation from excited dye molecules. 
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Table 4. Crock fastness ratings from Inkset F. 

D/W Color Weft 
Yarns 

Warp 
Yarns 

D 

Cyan 5 5 
Magenta 5 5 
Yellow 5 5 
Black 4.5 5 
Red 4.5 5 
Blue 5 5 

Orange 5 5 

W 

Cyan 5 5 
Magenta 5 5 
Yellow 5 5 
Black 4.5 5 
Red 4.5 4.5 
Blue 5 5 

Orange 4.5 5 

Table 5. Light fastness results from Inkset F. 

Color Exposure 
levels (h) Ratings 

Cyan 
160 2.5 
300 2.5 
500 2 

Magenta 
160 3.5 
300 3 
500 2 

Yellow 
160 3.5 
300 3 
500 2 

Black 
160 3.5 
300 2.5 
500 2 

Red 
160 3.5 
300 2.5 
500 2 

Blue 
160 3 
300 2 
500 1.5 

Violet 
160 2.5 
300 1.5 
500 1 

Table 6. Crock fastness ratings from Inkset L. 

D/W Color Weft Warp 

D 

Cyan 1.5 2 
Magenta 2 2 
Yellow 2 2 
Black 2 2 
Red 2 2 
Blue 2 2 

Green 2.5 3 
Orange 2 2 

W 

Cyan 1.5 1.5 
Magenta 2.5 2.5 
Yellow 2 1.5 
Black 2 2 
Red 2 2.5 
Blue 2 2.5 

Green  3 3 
Orange 2 2 

Table 7. Light fastness results for Inkset L. 

Color Exposure 
levels (h) Ratings 

Cyan 
160 4.5 
300 4 
500 3.5 

Magenta 
160 5 
300 4.5 
500 4 

Yellow 
160 4.5 
300 4.5 
500 3.5 

Black 
160 4.5 
300 4.5 
500 4 

Red 
160 3.5 
300 3 
500 3 

Blue (L) 
160 4 
300 4 
500 3.5 

Green 
160 4 
300 3.5 
500 3 

Orange 
160 3.5 
300 2 
500 1 

Conclusion and Future work 
Ink jet printing on PET benefits from a fabric pretreatment 

step, whether disperse dyes or organic pigments are used in the 
inks employed.  This enhances fiber receptiveness for the inks, 
leading to increased color intensity and color gamut. In addition, 
expansion of the standard CMYK color combination (inkset) to 
7 (disperse dye-based systems) or 8 (pigment-based systems) 
significantly increases the color gamut, as would be anticipated.  
Pigment-based inksets and disperse dye-based inksets bring 
advantages and disadvantages to the table. In this regard, the 
particulate nature of pigments can lead to superior light fastness 
over disperse dye-based inks.  In the present study, the disperse 
dye based inksets did not give satisfactory light fastness at 300-
500 h exposure levels, unlike the pigment systems.  On the other 
hand, the inability of pigment particles to diffuse into the fibers 
during the fixation step can lead to crock fastness problems.  
Compared with the pigment inksets, the disperse dye inksets 
provided deeper color shades on PET, the L* of black color was 
much lower in Inkset type F than in Inkset type L, which would 
be helpful in increasing the color intensity for the prints, when 
using the black ink individually, or when mixing it with other 
colors. 

It should also be noted that the high temperature heat-
setting process can cause fabric shrinkage – requiring a 
preshrinking step. For disperse dye inks, a wash-off step is 
required to remove surface dye that adversely affects color 
fastness.  

The fastness properties of the inksets used in this study 
merit further study with various photostabilizers and polymeric 
binders to enhance disperse dye lightfastness and pigment 
crockfastness, respectively.  Of interest would be to determine 
whether optimum results are obtained in a pretreatment or post-
treatment step. 
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