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Abstract

Ink drop spreading is an important factor influencing the
ink dots distribution which determines the color performance of
reactive dye inkjet printed cotton fabrics. In order to control
the ink drop spreading, a higher fatty acid derivative (PT) was
introduced in the traditional pretreatment solution of sodium
alginate. When compared with the untreated fabric, the ink
drop spreading area was reduced from 104.9 to 92.5 and 72.3
mm? on sodium alginate treated and sodium alginate plus PT
treated fabrics, respectively. The ink dots on the inkjet printed
fabrics with the pretreatment of sodium alginate plus PT were
narrow and short. Colorimetric values indicate that the color
performance of sodium alginate plus PT treated fabrics was
better than that of sodium alginate treated fabrics. Thus, the
color performance of reactive dye inkjet printing was improved
by the ink droplet spreading inhibitor PT.

Introduction

Textile inkjet printing is growing very quickly because it
provides many advantages such as excellent color expressive
force, fast response to market demands and cleaner production
[1]. Reactive dye inks are commonly used for cotton fabrics
inkjet printing. In the printing process, tiny ink droplets ejected
from small orifices precisely impact on the particular locations
of fabric surface [2]. Colors of the printed pattern are mixed by
a “process” method, in the case of the accurate distribution of
ink dots. Thus, to acquire satisfied inkjet printing products, it is
essential to control ink droplets on the precise positions on
fabric surface. However, ink droplets spreading on cotton fabric
is an important factor influencing the ink dots distribution. In
order to meet the requirement, thickeners (e.g. sodium alginate)
are usually applied onto fabrics prior to inkjet printing [3].

The purpose of this research was to study the effect of the
pretreatment on the color performance of reactive dye inkjet
printed cotton fabrics by controlling the ink droplets spreading.
In order to achieve the aim, a higher fatty acid derivative was
introduced in the traditional pretreatment solution of sodium
alginate to adjust the ink dots distribution. Contact angles and
surface energy of the untreated and pretreated cotton fabrics
were measured. Micrographs of the ink dots on the inkjet
printed fabrics were taken by means of an optical microscope.
Color performance of the inkjet printed cotton fabrics was
characterized using the colorimetric values of K/S, L* and C™.

Experimental
1.1 Materials

The fabric used was 100% singed, desized, scoured and
bleached cotton twill fabric (136 g/m?) with 133 ends/inch (405)
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and 72 picks/inch (40%), supplied by Yuyue Home Textile Co.,
Ltd (China).

Unless otherwise indicated, all chemicals used in this work
were of industrial grade. In addition to sodium bicarbonate,
urea, resist salt and medium viscosity sodium alginate (Qingdao
Bright Moon Group Co., Ltd, China), a higher fatty acid
derivative (called as PT, Shandong Huanghe Delta Institute of
Textile Science and Technology Co., Ltd, China) was employed.
Diiodomethane (A.R. grade) was purchased from Shanghai
Macklin Biochemical Co., Ltd (China). Fabrics were printed
with four reactive dye inks (cyan, magenta, yellow and black,
Hangzhou Honghua Digital Technology Stock Co., Ltd, China).

1.2 Preparation of Pretreatment Solutions

A mixed solution was prepared by dissolving sodium
bicarbonate (6 g), urea (20 g) and resist salt (2 g) in deionized
water (167 g). Then sodium alginate (5 g) was slowly added
into the mixed solution with constant stirring by a laboratory
mixer (RW20, IKA Group, Germany), and finally made up to a
final weight of 200 g with deionized water. The fabric treated
with this pretreatment solution was termed as sodium alginate
treated fabric.

Another mixed solution was prepared by dissolving
sodium bicarbonate (6 g), urea (20 g), resist salt (2 g) and PT (4
g) in deionized water (163 g). Then sodium alginate (5 g) was
slowly added into this mixed solution with constant stirring by
RW20, and finally made up to a final weight of 200 g with
deionized water. The fabric treated with this pretreatment
solution was termed as sodium alginate plus PT treated fabric.

1.3 Fabric Pretreatment

Pretreatment solutions were respectively padded onto two
pieces of cotton fabrics by using a padding machine (P-BO,
Xiamen Rapid Precion Machinery Co., Ltd, China) with the
pressure of 2.5 kg/m? and the pick-up of 70%. The pretreated
fabrics were dried in an oven (DHG-9123A, Shanghai Yiheng
Scientific Instruments Co., Ltd, China) at 80 °C for 5 min.

1.4 Inkjet Printing Process

A digital inkjet printer (VEGA 5000, Hangzhou Honghua
Digital Technology Stock Co., Ltd, China) was used in this
study. For measuring the colorimetric values, one rectangle
pattern of 80 x 150 mm was printed on the pretreated fabrics at
the resolution of 720 x 720 dpi and the color coverage of 100%.
For observing ink dots, two rectangle patterns of 80 x 50 mm
were printed on both the pretreated fabrics and photo paper at
the same resolution and the color coverage of 20%. The printed
fabrics were dried at 95 °C for 5 min.

Then the inkjet printed fabrics were steamed in a steamer
(STM-G2003, Suzhou Industrial Park YAMEI Textile Machine
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Co., Ltd, China) with saturated steam at 102 °C for 7 min. The
steamed fabrics were finally washed in cold water first,
followed by hot water with 2 g/L of standard detergent, and
then with warm water until no color could be further removed
from the fabrics. After washing, the printed fabrics were dried
in an oven at 80 °C.

1.5 Measurements

1.5.1 Contact Angle

Distilled water and diiodomethane were used as the probe
liquids which were dropped on the fabric surface using a micro
syringe, and the drop volume was 6.9 and 1.4 pL respectively.
Contact angles were measured at 20 + 2 °C and 67 ms after the
impact of the liquid drop on the fabric surface by an optical
contact angle analyzer (JC2000D, Shanghai Zhongchen Digital
Technology Co., Ltd, China).

1.5.2 Surface Energy

As suggested by Fowkes, both of the surface tension of
liquid (7, ) and the surface energy of solid (7s) can be split into
a dispersive component ( 7 , 75 ) and a polar component
(77,75). Surface energy of the cotton fabrics without and with
pretreatment were calculated using the geometric theory with
the following equations (1) and (2) [4]:

7S xyl +lyExyl =0.5xy, x(1+cosb,) (1)

Vs =75 +y§ ()
where, 0, is the contact angle of probe liquid. The surface
tension of distilled water and diiodomethane (Table 1) and the
contact angles were substituted into equation (1) respectively.
By solving the two equations, the values of the two variables
(7¢and y?) were gained. Then, the total surface energy (7s)
was calculated according to equation (2).

Table 1. Surface tension components of the probe liquids.
Surface tension (mN/m)

Probe liquid y .
7L 7L 7L
Distilled water 21.8 51.0 72.8
Diiodomethane 49.5 1.3 50.8

1.5.3 Drop Spreading on Fabric
A cyan reactive dye ink drop of 4.3 uL was dropped on the
fabric surface using a micro syringe. The time needed for the

ink drop to be completely absorbed into the fabric was recorded.

Then the dried fabric samples were scanned using a LaserJet
(Pro M1213nf, HP, USA) to get digital pictures. The drop
spreading area on the fabric was measured on these digital
pictures using an image analysis Image] software (National
Institutes of Health, USA). Five measurements were taken on
each fabric, then averaged.

1.5.4 Ink Dots Shape Observation

Ink dots on the inkjet printed fabrics and photo paper, with
the color coverage of 20%, were observed by an optical
microscope (YYS-80E, Shanghai Yiyuan Optical Instrument
Co., Ltd, China) with a magnification of 160 times.

1.5.5 Colorimetric Values

The colorimetric values (K/S, L* and C") of the printed
fabrics were measured using a spectrophotometer (Color 17, X-
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Rite, USA) under D65 illuminant, 10° standard observer and 6
mm reflectance apertures. Color difference (AE,, ) between the
printed fabrics with the pretreatment of sodium alginate and
sodium alginate plus PT was calculated.

Results and Discussion

2.1 Contact Angle

Contact angles of distilled water and diiodomethane drops
on the cotton fabrics without and with pretreatment are shown
in Table 2. The contact angles of distilled water on the
untreated, sodium alginate treated and sodium alginate plus PT
treated fabrics were 11.6°, 19.4° and 38.0°, respectively, at 67
ms after the probe drop impact on the fabrics.

Table 2. Contact angles of probe liquids on cotton fabrics.
Contact angles

Pretreatment
Distilled water Diiodomethane
Untreated 11.6° 22.6°
Sodium alginate 19.4° 66.9°
Sodium alginate + PT 38.0° 70.9°

Cotton fabric is composed of cellulose fiber which is a
relatively hydrophilic and water-absorbent fiber. There are
amount of voids between yarns, between fibers and between
fibrils in the untreated cotton fabric. The hydrophilic property
and porous structure make water molecules easily penetrate into
amorphous regions of the fiber [S]. As a result, the spreading
speed of distilled water on the untreated fabric was very fast
and the contact angle was small.

Sodium alginates are linear, amorphous and high water-
absorbing copolymers. For sodium alginate treated fabric, a
sodium alginate film was formed on the surface of cotton fibers.
The capillary continuity in the fabric was broken [6] and the
absorbency of fabric towards water was improved, which
reduced the spreading velocity of water drop on the fabric and
enlarged the contact angle. On sodium alginate plus PT treated
fabric, the contact angle of distilled water was almost two times
of that on sodium alginate treated fabric. This result indicates
the hydrophilicity of the fabric pretreated with sodium alginate
plus PT had been remarkably reduced due to the presence of
hydrophobic chain of PT on the fabric surface.

2.2 Surface Energy

The dispersion component and polar component of the
surface energy can accurately denote the wettability of the
fabrics. Surface energy of the cotton fabrics without and with
pretreatment was listed in Table 3.

Table 3. Surface energy of the cotton fabrics.
Surface energy (mJ/m?2)

Pretreatment y p
Vs Vs Vs
Untreated 35.25 38.54 73.79
Sodium alginate 14.65 54.80 69.45
Sodium alginate + PT 13.74 44.75 58.49

Compared with the untreated cotton fabric, the dispersion
component of the surface energy of sodium alginate treated
fabric was reduced by 20.6 mJ/m?, and the polar component
was increased by 16.16 mJ/m?. This was caused by the increase
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in number of hydrophilic groups introduced by sodium alginate
and urea.

Compared with sodium alginate treated fabric, the surface
energy of sodium alginate plus PT treated fabric was noticeably
reduced as a result of the reduction of the polar component (by
10.05 mJ/m?) and the dispersion component (by 0.91 mJ/m?).
This may be due to the reduction of molecular attractive force
between the pretreatment materials and the fibres.

2.3 Drop Spreading on Fabric

A cyan reactive dye ink drop of 4.3 pL was used to study
the spreading situation on the fabrics without and with
pretreatment. After the drop impacting on the fabrics, the time
need for completely spreading was 2, 7 and 12 s respectively on
the untreated, sodium alginate treated and sodium alginate plus
PT treated fabrics. The increasing trend of the spreading time
was consistent with that of the contact angles of distilled water
on these fabrics. This was owing to the fact that the total
proportion of water and solvent was more than 80% in reactive
dye based ink formulations.

5mm
Figure 1. Spreading results of the cyan ink drop of 4.3 uL on the different
fabrics, (a) untreated, (b) pretreated with sodium alginate and (c) pretreated
with sodium alginate plus PT

Figure 1 shows the spreading results of cyan reactive dye
ink drops on the untreated, sodium alginate treated and sodium
alginate plus PT treated fabrics respectively. It is clear that the
shape of the spreading area was elliptical on the untreated
fabric. This came from the difference in the wicking rates along
the direction of warp and weft yarns. However, it was almost
like a circle on the pretreated fabrics. The roundness (Table 4)
of the spreading area quantified the difference of the shape.

Table 4. Spreading results of cyan ink drops on untreated
and pretreated fabrics; the drop volume was 4.3 pL; the
roundness equals 4 x (Spreading area) | (1r x Long axis?).

Spreading area

Pretreatment (mm?) Roundness
Untreated 104.9 0.79
Sodium alginate 92.5 0.90
Sodium alginate + PT 72.3 0.91

As can be seen in Figure 1 and Table 4, the spreading area
was reduced in the order of the untreated, sodium alginate
treated and sodium alginate plus PT treated fabrics. It obviously
demonstrated that sodium alginate could restrict ink drop
spreading on cotton fabrics, and the capability can be enhanced
with the hydrophobic compound PT. This was attributed to the
formation of sodium alginate film on the fabric surface and the
reducing of the fabric surface energy after pretreatment.

2.4 Ink Dots Shape

On the inkjet printed photo paper (Figure 2(a)), the ink
dots look like circle. However, the ink dots are strip-like on the
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inkjet printed fabrics (Figure 2(b) and 2(c)). The differences in
the structure and surface property of the photo paper and fabric
resulted in the different diffusion of ink droplets. On cotton
fabrics, strip-like ink dots were formed because the ink droplets
spreading speed along the length direction of the fiber under
the capillary action was faster than that along the diameter
direction of the fiber.

R
.,"a ‘

500 pym
Figure 2. Ink dots on the cyan inkjet printed substrates: (a) photo paper, (b)
sodium treated fabric, before steaming and (c) sodium alginate plus PT
treated fabric, before steaming; the color coverage was 20%

From Figures 2(b) and 2(c), it can be found that the ink
dots were narrow and short on sodium alginate plus PT treated
fabric. This implied that pretreatment agent PT was useful to
control ink drop spreading after the droplets impacting on the
pretreated fabric in the inkjet printing process.

500 um
Figure 3. Ink dots on the inkjet printed cotton fabrics with the pretreatment
of (a) sodium alginate and (b) sodium alginate plus PT, after steaming and
washing; the color coverage was 20%

After steaming and washing, the ink dot became bigger on
both sodium alginate treated fabric (Figure 3(a)) and sodium
alginate plus PT treated fabric (Figure 3(b)). This can be
explained that during steaming the pretreatment materials, such
as urea and sodium alginate, absorbed more moisture to swell
cotton fibers and facilitate the dissolution and diffusion of
reactive dyes in the ink dots [7]. However, the ink dots were
darker and brighter on sodium alginate plus PT treated fabric,
which means that the dye was concentrated in an area on the
fabric surface. It can be concluded that the pretreatment
minimizing the ink droplets spreading was helpful to attain
higher color yield of the inkjet printed fabric.

2.5 Colorimetric Values

The lightness (L") of the inkjet printed fabrics are shown
in Table 5. Results demonstrated that, the inkjet printed fabric
with the pretreatment of sodium alginate plus PT was darker
(smaller of L* value) when compared with sodium alginate
pretreated fabric.

Table 5. The lightness (L) of the inkjet printed fabrics.
Pretreatment Cyan Magenta Yellow Black
Sodium alginate 49.7 44.6 86.8 211
Sodium alginate + PT 47.2 42.3 86.4 19.2

Figure 4 shows the K/S values of the inkjet printed fabrics
with different pretreatments. It is clear that the K/S values of the



inkjet printed fabrics treated with sodium alginate plus PT were
bigger than that of the fabric treated with sodium alginate.
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Figure 4. K/S values of the inkjet printed fabrics with different
pretreatments

As shown in Figure 5, for the cyan, magenta and yellow
dye inkjet printed fabrics, the saturation (C”) of sodium alginate
plus PT treated fabrics were higher than that of sodium alginate
treated fabrics. This implied that PT improved the brightness of
the reactive dye inkjet printed fabrics. It was contrary for the
black dye inkjet printed fabrics.
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Figure 5. The saturation (C’) of the inkjet printed fabrics with different

pretreatments

The color difference between the inkjet printed fabrics
with the pretreatment of sodium alginate and sodium alginate
plus PT were calculated and shown in Figure 6. There was a big
color difference ( AE,, >2.0 ) between the two fabrics with
different pretreatments. Combined with the colorimetric values
of K/S, L* and C", it was found that the sodium alginate plus PT
treated fabrics had a better color performance when compared
with the sodium alginate treated fabrics.
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Cyan Magenta Yellow Black
Figure 6. Color difference between the inkjet printed fabrics with the

pretreatment of sodium alginate and sodium alginate plus PT
The color of the inkjet printed fabric is determined by the

light source irradiation on the fabric, light absorption, reflection,
transmission and scattering of fabric and observer together. The
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distribution of the dye on the fabric has a great influence on the
light absorption and reflection. The promotion of the color
performance was mainly due to the restricting effect of PT on
ink drop spreading and penetration into fabric which leading to
most of the dye fixed on the fabric surface.

R ,&‘f )/ ) Qm = 7 R

Figure 7. Scanned images of the inkjet printed fabrics: (a) pretreated with
sodium alginate and (b) pretreated with sodium alginate plus PT

Figure 7 presents the scanned images of the inkjet printed
fabrics with different pretreatments. In comparison with sodium
alginate untreated fabric, the color of sodium alginate plus PT
treated sample was more vivid.

Conclusion

Surface energy of the cotton fabrics was evidently reduced
from 73.79 to 69.45 and 58.49 mJ/m’ after the pretreatment
with sodium alginate and sodium alginate plus PT respectively.
Correspondingly, the ink drop spreading area on these fabrics
decreased from 104.9 to 92.5 and 72.3 mm?. Furthermore, on
the sodium alginate plus PT treated fabric, the strip-like ink
dots were narrow and short, which means the dye was
concentrated in an area on the fabric surface. Based on the
colorimetric values and the appearance of the inkjet printed
fabrics, it was readily demonstrated that the hydrophobic
compound PT could enhance the ability of sodium alginate for
controlling the spreading of ink droplets, thereby improving the
color performance.
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