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Abstract 

The drying of picolitre droplets printed onto patterned 
substrates has been imaged.  Organic solvents were printed in 
a drop-on-demand format into 200 µm × 200 µm square wells 
surrounded by walls of polymer resist which were 1.5 μm high 
and 20 μm wide.  Particle tracking velocimetry (PTV) data 
revealed the velocity and direction of flows during drying, 
which could be understood in terms of differential rates of 
evaporation across the drop. Alongside PTV, interferometry 
was used to observe the profile of the drop during drying.  The 
measurements revealed that variations in the evaporation rates 
across the drop were not the only cause of uneven deposits 
when printing onto patterned substrates. More important was 
the capillary suction caused by negative curvature in the drop 
once the level of the fluid dropped below the tops of the walls 
defining the wells, if the drying droplet was pinned at the tops 
of the walls. For fast evaporating drops, we observed the 
formation of a dimple in the centre of the well towards the end 
of drying. 

Introduction 
It is well known that drops containing solutes or 

particulate suspensions do not dry on flat substrates to give 
even deposits.  Enhanced evaporation at the contact line leads 
to capillary flows within drops which leave behind ring-like 
deposits.  This is often referred to as the coffee-ring effect and 
is undesirable in inkjet printing as it reduces the quality of 
printed images and limits resolution [1,2,3]. In certain cases, 
the coffee-ring effect can even hamper the performance of 
printed products (eg in printed displays or printed electrical 
circuits) [4,5,6,7].  There are a number of reports in the 
literature of methods for mitigating ring stains; however they 
are often limited to specific formulations or applications 
[8,9,10,11,12].          
 The published literature on droplet drying usually refers to 
isolated drops in the vapour phase or sessile drops on flat, 
uniform substrates. An unconstrained drop on a flat substrate 
adopts the shape of a spherical cap and the drying problem has 
azimuthal symmetry.  In many applications, one wants to define 
exactly where the ink ends up on the substrate and/or to isolate 
certain areas of fluid from others [6,7,13]. When this is the 
case, drops are printed into wells that are bounded by physical 
and/or chemical barriers.  The presence of walls breaks the 
cylindrical symmetry of the drying problem as well as 
modifying the evaporation patterns and boundary conditions of 
the contact line. All of these factors influence the capillary 
flows in drying drops, and as a consequence strategies which 
give uniform deposits on flat substrates are not necessarily 
directly applicable to patterned substrates. In order to produce 
even deposits on patterned substrates it is first necessary to 
understand what causes the deposit to become uneven in the 
first place. 

In this paper we present results on a number of different  
organic solvents drying in square wells. Our goal was to 
understand how these solvents dry in patterned substrates and  

how this leads to uneven deposits. This gives us the basis on 
which to build to even out deposits from drops drying in square 
wells.  

Experimental 
The drying of six organic solvents was investigated: 

anisole (ReagentPlus, 99%), methyl anisole (99%), dimethyl 
anisole (99%), methyl benzoate (99%), mesitylene (98%) and 
o-xylene (99%). All solvents were supplied by Sigma Aldrich 
and used as supplied. Two experimental techniques were used 
to investigate the drying of drops in patterned substrates; 
particle tracking velocimetry (PTV) and interferometry. 
 Solutions were ejected from a piezo-electric single nozzle 
print head (Microfab, MJ-ABP-01) with an orifice diameter of 
50 μm.  The print head was actuated with a symmetrical bipolar 
waveform with the voltage set to give a single drop per pulse.  
Drops were deposited onto substrates provided by Merck 
Chemicals, which contained an array of 200 µm × 200 μm 
square wells surrounded by walls of polymer resist 1.5 μm high 
and 20 μm wide.  Substrates were cleaned in an ultrasonic bath 
in IPA for 2 × 15 minutes, with a change of IPA, followed by   
1 × 15 minutes in ultrahigh purity water.  Substrates were then 
blown dry with argon before being dried in an oven at 230 °C 
for 2 hours.           
 For PTV measurements, the fluid was seeded with 500-nm 
silica beads (Kisker-biotech, fluo-green beads) as tracer 
particles. Drying drops were deposited onto the substrate, 
which was in the focal plane of an objective lens (Nikon, TU 
Plan ELWD, 50× magnification, numerical aperture 0.6). The 
lens was mounted directly underneath the substrate. 
Illumination came from a blue LED (Thorlabs, 1000 mA, 470 
nm) which sat above the substrate at an oblique angle so only 
forward scattered light from the particles could be seen. Drying 
was recorded with a high-speed camera (Photron, fastcam SA4) 
at rates between 125 and 1000 fps, so particle movement could 
be tracked frame by frame.  Particle tracks were analysed to 
give the velocity and direction of particle movement, which 
was assumed to follow the fluid flow.     
 For interferometry measurements the drying drops were 
illuminated from below through a beam splitter. An LED 
(Thorlabs, 1000 mA, 470 nm) was used.  The substrate/drop 
and the drop/air interfaces provided different reflective 
surfaces, giving two reflected beams from the illumination light 
which recombined before reaching the camera to give an 
interference pattern in the final images.  As reflections from the 
substrate were constant, any changes in the interference 
patterns seen could be attributed to the changing profile of the 
drying drops.           
 Analysis of the images began at the end of drying and 
counted backwards through the frames to build up a picture of 
how the profile of the drop changed as drying progressed.  Each 
fringe (bright to bright) represented a 155 nm change in 
thickness and the coherence length of the LED was of the order 
of 10 µm.  The sharpness of the images decreased as the film 
thickness increased owing to the finite coherence length of the 

170 © 2016 Society for Imaging Science and Technology

https://doi.org/10.2352/ISSN.2169-4451.2017.32.170
©2016; Society for Imaging Science and Technology



 

 

LED and led to the miscounting of some fringes in the early 
stages of drying.  Therefore the plots of film profile appear to 
be more “noisy” for early film profiles.  The region very close 
to the walls was excluded from analysis: Here the fringes were 
very close spaced and superimposed on scattering from the 
walls themselves, making interferometric analysis unreliable.  
Consequently the height plots in figures 7 and 10 do not extend 
up to the edges of the wells.  

Results and Discussion 
The PTV measurements showed that in the initial stages of 

drying, flows were radially outwards towards the contact line 
(figure 1) with the fastest particle movement at the edges and in 
the corners of the wells.  Figure 2 shows the spatially binned 
average velocity vectors. The pattern of particle movement 
suggested evaporation was fastest at the edges of the drop and 
slowest across the apex, so capillary flows came from the 
centre of the drop towards the contact line to counteract the 
relative loss of fluid, very much like a drop with an 
unconstrained contact line drying on a flat substrate.  

 

 

 

 

 

 

 

 
 
Figure 1. Tracks for the early stages of drying (from the end of spreading 
to halfway through drying) for a methyl anisole drop in the square wells.  
Images were recorded at 1000 fps.  The blue dots show particles which 
were stationary throughout drying, red dots are the end of movement and 
the yellow tails show the trajectory of movement. 

 

 

 

 
 
 
 
 
 
 

 
Figure 2. Vectors showing the average speed and movement of the 

particles within each spatial bin between 0.3 and 0.4 of the drying time 

where the total drying time is 1. The flows which correlate to this 

movement are seen in figure 1. 

Interferometry showed that in these early stages of drying, 
the surface of the drop was well above the walls in the form of 
a quasi-spherical cap (figure 3), giving a profile similar to that 
of a spherical cap on a flat substrate,  explaining the radial 

flows (figure 4). All solvents imaged through PTV (anisole, 
methyl anisole and methyl benzoate) showed the same initial 
radial flow with the only difference from solvent to solvent 
being the speed of particle movement, which was directly 
correlated to the speed of drying of the solvent.  

 

 

 

 

 

 

 

 
 

Figure 3. An interferometry image showing the printed drop in the square 

well.  At this point the drop is sitting above the level of the walls in the form 

of a quasi-spherical cap. 

 
 

  
 

Figure 4. A schematic showing a drop in the early stages of drying.  The 

light and dark blue fluid represent the same drop, different colours have 

been used to distinguish areas above and below the top of the walls.  

Above the red line the drop is a quasi-spherical cap. 

In the later stages of drying (roughly the last third of the 
drying time), the pattern of particle movement in the drops 
changed.  Movement began to concentrate around the edges of 
the wells towards the corners and there was little movement 
from the centre (figure 5).  Again the pattern of particle 
movement was the same for all solvents imaged with the only 
differences being the speed of movement. Interferometry 
showed that as the drop dried past the point where it was flat 
and level with the bank walls the profile of the film depended 
on the drying rate of the drops.  
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Figure 5. Particle tracks for the later stages (from two-thirds of the way 

through drying until the drop was dry) of drying of the methyl anisole drop 

in the wells. 

For the slower drying solvents with drying times between 
10 and 60 s (mesitylene, dimethyl anisole, methyl benzoate) the 
drop remained pinned at the tops of the walls and took on the 
shape of an inverted spherical cap (figure 7). In the very late 
stages of drying the central region of the fluid flattened out to 
leave behind a flat central region which then curved very 
steeply upwards at the edges of the wells to the tops of the 
walls (figures 6 and 7).  In the case of these slow drying 
solvents the central region of the drop dried before the edges 
and a U- shaped final film profile was seen.  

 

 

 

 

 

 

 

Figure 6. A slice plot showing the changing interferometry patterns from a 

slow drying dimethyl anisole drop.  Images were recorded at 500 fps. The 

top image is at the beginning of drying and the bottom image near the end 

of drying. 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 7. The changing profile of a drying dimethyl anisole drop with a U- 

shaped final film profile. Time progresses from the top of the plot to the 

bottom.  Total drying time was 45 s and the curves are equally spaced in 

time. 

The profile in the later stages of drying provided an 
explanation for the PTV tracks from the end of drying.  Flows 
were only around the edges of the wells as this was the only 
region of the well containing fluid deep enough for the particles 
to flow through.  The concentration of movement towards the 
corners was a result of curvature in the drying film (figure 8).  
The curvature in the film from the bottom of the wells up to the 
wall tops, as the drop pinned there, caused a negative Laplace 
pressure which pulled the fluid in the film towards the walls.  
The fluid in the corners was curved in two directions giving a 
greater negative pressure than along the edges in which the 
fluid was only curved in one direction, so it travelled along the 
edges of the walls towards the corners.  

 
 

 
Figure 8. A schematic showing the curvature in the drop  
as it dried down past the level of the walls and remained pinned at the top, 
along with the resulting capillary suction to the edges of the banks. 

For the faster drying solvents with drying times less than 
10 s (methyl anisole, anisole, o-xylene) the drop also remained 
pinned at the tops of the walls and initially took on the profile 
of an inverted spherical cap. However, as the drying 
progressed, a raised region formed in the centre of the wells 
whereby thinning became fastest in the intermediate regions 
and slower in the centre of the wells.  This pattern is similar to 
the “dimple” formed when a liquid drop lands on a liquid 
surface or when two emulsion drops collide [14] and will 
henceforth be referred to as dimpling of the film.  Therefore the 
thickest fluid regions were in the centre and at the edges, with 
the thinnest regions in the intermediate areas of the wells 
(figures 9 and 10).  In the case of these fast drying solvents, the 
central region dried either at the same rate as or faster than the 
fluid at the edges and a W- shaped film profile was seen.  
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Figure 9. A slice plot showing the changing interferometry patterns and 

dimple formation from a fast drying methyl anisole drop.  Images were 

recorded at 500 fps. The top image is at the beginning of drying and the 

bottom image near the end of drying.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 10. Changing profile of a drying methyl anisole drop with dimple 

formation in the later stages of drying and W- shaped final film profile. 

Time progresses from the top of the plot to the bottom. Total drying time 

was 10 s and the curves are equally spaced in time. 

The profile of the faster drying solvents could also be 
explained by the curvature in the film (figure 11).  The negative 
Laplace pressure caused by the curvature resulted in fluid being 
sucked from the centre of the wells towards the walls. This 
capillary suction was present both in the slow and fast drying 
solvents.  However in the faster drying solvents the evaporation 
was so rapid the capillary suction could not keep up with the 
drying and instead of taking fluid from the centre of the well it 
took fluid from the intermediate regions.  Therefore the 
intermediate regions thinned more quickly than the centre of 
the drop to give a thicker fluid region at the centre and at the 
walls than in the intermediate regions. The dimpling of films is 
a phenomenon which has parallels in the dimple formation seen 
in the drainage of thin soap films [15,16].  
 
 

 

 
Figure 11. A schematic showing how evaporation (blue arrows) and 
capillary suction (white arrows) thinned the film in intermediate regions 
and prevented capillary flows coming from the centre of the fluid.  

Thus far the solvents have been separated into fast and 
slow drying solvents.  However, in reality the distinction was 
not so simple.  The speed of drying of the solvent was greatly 
affected by a number of factors such as the relative distance 
between the nozzle and the substrate (which influences the 
relative vapour pressure).  The most important factor in 
determining the profile of the drying film was the rate at which 
the solvent evaporated under the experimental conditions.  

Conclusion 
We have identified how drops dry on patterned substrates 

and which factors affect the profile of the film in the later 
stages of drying.  Drying in patterned substrates is very 
different to the drying of a spherical cap drop with a pinned 
contact line on a flat substrate. With all solvents, the fluid 
began as a quasi-spherical cap sitting above the walls, before 
drying down to the level of the tops of the walls.  Up to this 
point the flows seen were akin to those seen in the drying of a 
drop with an unconstrained contact line on a flat substrate.  As 
the fluid dried down past the level of the walls it remained 
pinned at the tops of the walls.  The speed of drying then 
determined whether a U- or W- shaped film profile developed.
 The most important influence on uneven deposits when 
drops dry on patterned substrates was identified as capillary 
suction. Capillary action resulted from the negative Laplace 
pressure created by the curvature in the film when the drops 
pinned at the wall tops.  This is a different mechanism to the 
cause of uneven deposits when drops dry on flat substrates.  
Controlling capillary flows within the walls is essential for 
obtaining uniform deposits. 
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