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Abstract 

Inkjet technology is in the process of revolutionizing 
traditional printing and dispensing industries. An ever-
increasing number of startups and established companies have 
been working hard to create their own proprietary inkjet 
knowledge and advanced materials. Machine vision tools have 
become integral to this R&D process, especially for imaging and 
measuring drops in flight.  

Drop in flight imaging is usually accomplished using a 
strobe light synchronized with the firing frequency, together with 
a camera and workstation (Figure 1). Analysis is accomplished 
using machine vision techniques, including automatic 
thresholding, edge finding, and connectivity. 

 
Figure 1 - Basic Drop Analysis System Layout 

The implementation of this type of system, however, is far 
from trivial. In order for measurements to be accurate and 
repeatable, it’s very important that proper system design and 
analysis methods are used.  

In this paper, we will discuss imaging techniques and other 
important considerations for drop-in-flight volume and velocity 
measurements. Broadly speaking, categories include print 
controller requirements, optical design, image analysis 
algorithms, and calibration, as well as other factors and pitfalls. 

The impact of these design choices will be explained using 
theory, experimental data and practical examples. 

Single Event Imaging  
Firstly, it’s important that a dropwatching system have 

single event capabilities. In other words, it must be capable of 
imaging a single drop, rather than averaging or summing images 
of several drops. This is necessary for high quality drop 
visualization, and it’s even more important for drop 
measurement.  

Some drop-to-drop variation is unavoidable, whether using 
piezo or any another drop dispensing technology. Drop to drop 
variations mean that multi-drop images appear blurred, and 
transient effects, like satellites, are usually indistinct. An 
example of the difference between single event imaging and 
multi event imaging is shown in Figure 2. 

The challenge in developing a system capable of single 
event imaging is producing a strobe capable of outputting 
sufficient light in a single pulse, of short enough duration to 
produce crisp images.  

 
 
 
 
 
 
 

 

 
Figure 2 – Single vs. Multiple Event Imaging (using jetxpert) 

 
Figure 3 – Drop Formation, Single Event Imaging (JetXpert) 

Short Strobe Pulse 
The strobe light source must be capable of short pulse 

widths, in the range of one microsecond or less. This is because 
inkjet ejected drops travel at high speed, usually at least several 
meters per second. When a fast moving drop is imaged using a 
long strobe pulse, the result is blur. The relationship between 
drop speed, pulse width, and blur, is shown in Figure 4. Like 
multi-event imaging, drop blur is harmful to both drop image 
clarity and measurement accuracy 

When the strobe pulse width is reduced, less total light is 
emitted. Thus, if an imaging system has insufficiently powerful 
lighting, it may be impossible to get both high clarity, and high 
contrast. Similarly, a main reason dropwatcher designers 
sometimes resort to multi-event imaging is that the light source 
is insufficient. Also, certain lighting sources simply are not 
capable of sub-micron pulsing. It is recommended that 
dropwatching systems include powerful lighting sources capable 
of short pulse widths, at least as low as 1um, but preferably 
significantly lower. Powerful lighting sources are also a critical 
component towards making single event imaging possible. 
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Figure 4 – Pulse Width vs Image Blur 

Double Strobe 
If a dropwatching system is intended to measure drop 

velocity or trajectory it’s important that they system be capable 
of capturing double strobe images. Double strobe images are 
captured by flashing the strobe twice, with a short, known 
interval between flashes. Because the camera shutter is left open 
during this process, the two flashes result in two images of each 
drop in the field of view, each at a different point in time.  

This double strobe image is analyzed by finding the 
centroid of each image of the drop, and measuring the distance 
between the centroids (Fig. 5).  

 

 
Figure 5 – Double Strobe Analysis (JetXpert) 

Because the time between the flashes is known, the drop 
velocity may be simply calculated according to: 

 

                ܸ ൌ
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where V is velocity, ଶܶ - ଵܶ is the interval between flashes, ܦଵೣ  
is the x position of the center of the first drop image, ܦଶೣ  is the x 
position of the center of the second drop image, etc. Similarly, 
trajectory may be calculated by (for example): 
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In some more rudimentary systems, users estimate velocity 
by imaging different drops at different delays, and inferring drop 
velocity. However, this method is not accurate, for the same 
reason that multiple event imaging does not create accurate 
images: drop-to-drop variations. Even small drop-to-drop 
variations can cause significant inaccuracies in drop velocity 
measurements based on single strobe images. 
 

The effect of variations in drop velocity on the accuracy of 
single-strobe velocity measurements is easily calculated. If the 
first drop is being measured at time T1, and the next drop is 

measured at time T2, drop-to-drop velocity variations of 
magnitude ∆ܸ will cause errors in drop velocity measurements 
of magnitude 
 

                               ఌܸ ൌ
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(3) 
 
An example illustrating this effect is shown in Figure 6. 
 

 

 
Figure 6 – Double Strobe Analysis Reports Correct Velocity; Single Strobe 
Method Amplifies Errors 

In Figure 7, experimental results are shown, comparing 
actual velocity measurements made using a double strobe 
method, with velocity measurements made using single strobe. 
The drops being measured using each method are produced by 
the same printing system (same ink, waveform, etc). It is easy to 
see that in this case (which is not atypical), the single strobe 
analysis vastly over-reports drop velocity variations. 

Problematic error sources for single strobe measurements 
are not limited to drop-to-drop velocity variations. There are also 
variations in the time between the firing pulse and drop ejection 
from the nozzle. When using single strobe measurement 
methods, these variations are also a significant source of error. 
Furthermore, even very small trajectory variations completely 
invalidate trajectory measurement results from single strobe 
methods. Indeed, of all drop watching system attributes, double-
strobe capabilities may be the most important. 
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Figure 7 – Experimental Comparison Between Single and Double Strobe 
Velocity Measurements 

Telocentric Optics 
Telecentric optics are a general requirement for machine 

vision applications, and drop-in-flight analysis is no exception. 
There are several reasons for this. 
Low Distortion 

Significant distortion is unacceptable for machine vision 
applications, for obvious reasons. Accurate measurement of 
feature dimensions or distances requires that the distances 
between features on the image be proportional to the 
corresponding distance in real space. One of the advantages of 
telecentric optics is that they usually have far lower levels of 
optical distortion than non-telecentric alternatives. The 
illustration below shows a distortion pattern taken with a 
telecentric lens, on the left, and with optics showing common 
forms of distortion, in the center and on the right. 
 

 

Figure 8 – Illustration of radial and trapezoidal distortion (credit: Opto-
Engineering) 

Elimination of Parallax Error 
Parallax error causes objects of identical size that are 

positioned closer or farther away from the primary lens, to 
appear to have different dimensions. For machine vision 
applications where the object to be measured may appear at 
various distances from the primary lens, it’s critical to eliminate 
parallax error by using telecentric optics. 

For a drop analysis system, this particular error may not be 
as great of a concern if the drop is consistently positioned 
relative to the light source and camera optics. However, it can 
still be a meaningful source of error in non-telecentric systems, 
and is another reason to select telecentric options for drop 
analysis applications. 

 

 
Figure 9 – Illustration of Parallax Error, Solved By Use of Telecentric Lens 
(credit: Edmund Optics) 

Stable Edge Dimensions under Focus Changes 
Even when the goal of a machine vision application is to 

use a fully focused image of the object to be measured, it is 
inevitable that there will be some level of defocus. With 
telecentric optics, blurring due to defocus occurs evenly, 
centered around the edge itself. This means that measurement 
algorithms can still measure dimensions and distances 
accurately, despite a small level of defocus. 

If defocus causes the edge to shift significantly, as may be 
the case when using non-telecentric optics, significant error may 
be introduced. 
 

 
Figure 10 – Illustration of the Effect of Defocus on Edge Position (credit: 
Edmund Optics) 

Analysis Algorithms 
Even if a system is capable of capturing high quality 

images, appropriate machine vision tools are still needed to 
derive measurement data from those images. One of the most 
important factors to consider is background light variations. 
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When imaging most printing systems, light levels decrease 
closer to the head. If algorithms cannot measure a consistent 
drop edge when a background gradient is present or light levels 
are varying, both volume and velocity measurement accuracy 
will suffer. 

              

Figure 11 – Full Edge Analysis vs Single Point 

It’s also important that the entire drop perimeter be 
measured, in order to calculate the drop radius and center, not 
merely a leading or trailing edge. Measurements based on 
leading and trailing edges only are not only far less accurate, but 
they can be particularly misleading in cases where drop shape is 
changing over time. By contrast, centroid based velocity 
measurements and full edge based volume measurements can 
easily achieve significant sub-pixel accuracy, if properly 
implemented (figure 11). 

Measurement algorithms may be capable of handing a 
variety of situations, including satellites, ligaments, and drop-
out. 

 

Figure 12 – JetXpert (Includes Automated Testing Options) 

Automation 
It is worth taking time to consider what types of 

measurements will be performed by developers, and whether 
they can be automated. Great dropwatching systems have 
automation tools available that can save hundreds of hours of 
engineering time, by automating test procedures that would 
otherwise need to be performed manually. This may include 
measuring drop performance over a range of frequencies, testing 
sustainability, testing latency/decap effects, collecting large sets 
of drop data for a single nozzle, or measuring each nozzle on the 
head. Generally, adding relevant automation capabilities to a 
dropwatching system is worthwhile. That said, inkjet crosses a 
wide variety of industries and applications. Some drop watching 
add-on capabilities, which others may find invaluable, may not 
be necessary for your application. It’s worth putting thought into 
what tests your engineers will be doing, and what tools can best 
help them accomplish those tasks accurately and efficiently. 

 

Added Capabilites 
Modern drop watching systems are often combined with 

various print controllers, ink supply systems, drop weigh 
stations, print quality analysis tools, and print stations, in order 
to create vastly more capable R&D platforms. These systems go 
beyond mere dropwatching, and can save a considerable amount 
of engineering time, by preventing engineers from having to 
manually move ink, ink supply units, printheads, and controllers 
between various different test systems, in order to accomplish 
different tests. The JetXpert Print Station is an example of such a 
system (figure 13). 

While these additional tools are not necessary for 
measurement of drops in flight, thinking ahead to integrate all 
necessary tools into one development platform is an important 
design consideration for any drop analysis system, and the 
effective use of such a tool can vastly speed the inkjet 
development process. 

 

 
Figure 13 – JetXpert Print Station 
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