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Abstract 
A new binder jetting process for fabricating metal or 

ceramic parts has been developed by using coated powder and 
inkjet technique. In this study, we have developed metal and 
ceramic particles coated with 100 nanometer thickness of water 
soluble resin in conjunction with a new concept of ink which 
includes cross linking agent that acts on the coated resin but 
does not include any binding ingredients. In this paper, we 
present a methodology of our new binder jetting process and an 
overview of mechanical and physical properties of 316L 
stainless steel parts created by our process. 

Introduction  
In the Additive Manufacturing field, powder bed fusion 

(PBF) processes such as selective laser sintering (SLS) or 
electron beam melting (EBM) are mainly applied to fabricate 
metal parts. However, these devices are still used in very 
limited applications like surgical implants, aerospace 
equipment due to their high introduction and running cost.  
Basic principle of their fabrication process requires high-energy 
beam sources and controlled atmosphere with inert gasses. This 
would be the cause of the high cost. 

On the other hand, binder jetting process is largely applied 
to fabricate gypsum or casting sand. Binder jetting process has 
some incontrovertible merits compared with the powder bed 
fusions. No support structure is needed during the forming 
process. Fabricating productivity is potentially higher than 
PBFs [1]. There are, however, a few practical applications for 
metal or ceramic materials with binder jetting apparatus [2-3]. 
One reason is that post processes of degreasing and sintering 
are necessary to achieve high density parts [4]. Those are 
certainly burdensome tasks. Furthermore, jetting ink including 
binding components is severe for inkjet technology to ensure 
high reliability. Binders are easily dried and hardened in and 
around the nozzles of inkjet heads. This may cause lack of 
fabricated parts and weaken them. 

We have been developing new fabricating process to settle 
these problems. We focus on keeping the reliability of jetting 
operation of ink high and shorten the time required for post 
heating process． 

The main aim of our study is to make prototype parts 
quickly and inexpensively without molds in the powder 
metallurgy industry. In this industry, almost of all the 
companies or laboratories have heating furnaces which 
commensurate with their own demands or materials. These 
facilities can be utilized as they are used for degreasing and 
sintering parts created by our new process.  

Methods 
In this section, we explain a series of our process 

including materials, printing machine, and a fabricating 
principle. 

We prepare stainless steel 316L powder. It is a 
commercially available grade. Particle size distribution D50 
value of the powder is approximately 14 micrometers and any 
particle size distribution adjustment is not applied.  

Each particle is coated with roughly 100 nanometer 
thickness of water soluble resin. The resin composes primarily 
of PVA. We have a couple of methods and devices for coating 
particles. The best way that depends on the powder 
characteristic such as density, shape, and safety is selected. 
After coating, powder pass through cracking machine to loosen 
some agglomerates. 

The main component of the ink is water. Cross linking 
agent is added to harden fabricating parts. Small amount of 
humectant and viscosity modifier are added to it. We use the 
word “ink” for convenience throughout this paper. But this 
liquid do not include any color pigments.  

We build original binder jetting machine using our 
commercially available 2D inkjet printer (Figure 1). This 
printer has four inkjet heads for full-color printing originally. 
Since we do not need color for purpose of this study, every 
head is filled with the same ink as mentioned above.  Each head 
has 384 nozzles and its substantial resolution is 300npi (nozzle 
pitch is approximately 84 micrometers). Heads are precisely 
aligned with each other as shown in Figure 2.   

Figure 1 A photograph of binder jetting machine  

Figure 2 A schematic view of inkjet heads array layout 

Two powder tubs which are adjacent to each other are 
settled beneath the moving inkjet heads. The bottom plate of 
the tubs are movable along vertical axis independently. Layer 
spreading and subsequent ink jetting sequence are 
schematically shown in Figure 3. This procedure is a typical 
binder jetting method [3].              
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Figure3 Layer spreading and subsequent ink jetting sequence 

 
Every single layer thickness is 84 micrometers. The 

bottom plate of the powder feed tub moves up to 200 
micrometers. On the other hand, the bottom plate of the build 
tub moves down to 84 micrometers. Powder layer is generated 
by using a recoater (counter rolling bar) which moves 1-axis 
over the tubs. Rotation speed of the recoater is set to 15rpm. 
Moving speed is set to 150-200mm/s. Excess powder is trapped 
at the saucer.  

Inkjet heads come over the build tub and jet the ink 
droplets. Typical droplet volume is approximately 50 picoliter 
per nozzle. Because all four heads receive same sliced print 
data from the printer system, one voxel in the powder layer gets 
200 picoliter within a several hundred milliseconds. 

The water in the ink melts the coated water soluble resin 
no sooner than the ink touches to the particles. The crosslinking 
agent in the ink acts on the resin and makes molecular bondings 
three-dimensionally (Figure 4). 

We produce 30mm × 10mm × 3mm rectangular specimens 
by using the materials and methods as mentioned above. We 
call these specimens “green body”. These parts become 
metallurgic via post processing of degreasing and sintering. We 
measure porosity and mechanical strength of the green body 
and sintered parts. We also observe the metallic structure of the 
sintered parts. 

 Figure 4 A conceptual diagram of binding mechanism 

Results and discussions 
Coated particle SEM image is shown in Figure 5. 

Relatively black part observed on the particle is the resin. 
Figure 6 shows a cross sectional view of one particle. We see 
very thin resin layer on the stainless steel (white part) body. As 
plotted on Figure 7, three-points bending strength of the green 
body depends on the amount of the resin in the powder. It is 
clear that there is a linearity. We stress that only 1wt% of resin 
is sufficient for getting green bodies strong enough to handle. 
This amount of resin is significantly less compared with the 
conventional powder injection molding methods.  

 
 

Figure 5 Coated particle SEM image 

Figure 6 Cross sectional SEM image of 316L stainless steel particle 

(D~15um) coated with nanometer (80~100nm) thickness of resin 

Figure7 Three points bending strength of the green bodies 

Figure 8 shows the relation between the ink volume jetting 
in to a voxel in the powder layer and the porosity of the parts. It 
is certain that the porosity of green bodies and sintered parts 
decrease as the ink volume increases. Cross sectional photos of 
sintered parts are shown in Figure 9. We see a characteristic 
stripe structure corresponding to the layer thickness on the left 
side of Figure 9. Less ink volume creates this structure. In 
contrast to this, in the case of increased ink volume condition, 
we obtain less porosity parts as shown in the right side of 
Figure 9. We discuss this interesting phenomena in the next 
section.  
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Figure 8 Porosity of the green bodies and the sintered parts 

Figure 9 Comparison of ink volume effects on the internal structure of the 

sintered parts 

Tensile strength of the sintered parts are shown in Figure 
10. From this figure, one immediately sees that the porosity and 
tensile strength of orthogonal to the build direction have a 
linearity. We think this result is consistent with the research so 
far conducted.  By contrast, tensile strength to the build 
direction is weaker than that of orthogonal to the build 
direction. The linearity to the porosity is not clear. One reason 
is that some cracks corresponding to the build layer are still 
remain in the parts. We are now trying to improve this 
anisotropy of the tensile strength. 

Figure 10 Tensile strength of the sintered parts 

We now discuss the results obtained in Figures 8 and 9 in 
connection with an interaction between the ink and the powder. 
A microscopic schematic view of the ink and the particles 
behavior is shown in Figure 11. Before ink jetting, packing 
density of the powder is nearly equals to the bulk density of the 
intrinsic value of the powder. Because there is no tapping force 
or vibrations while recoating.  

 
While the ink penetrate the powder, the air in the voxel is 

almost replaced by the ink. The ink surface forms meniscus and 
the liquid pressure is lower than the atmosphere pressure. This 
state called a capillary. Particles in this state move toward 
center of the voxel by the liquid bridge force. This force arises 
from surface tension and capillary effect of the ink. The force 
at the neck of the bridge F is given by the sum of the surface 
tension and the suction as below [5].  
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Where Pa, Pl andγare pressure of air, pressure of ink and 
surface tension between air and ink, respectively. r1, r2 
represents curvature radii of meniscus. 

In the case of less ink volume, particles in the voxel of the 
each layer are independently bound by the force formulated by 
(1) and the gap appears between the layers. It seems that this 
gap becomes the origin of the characteristic stripe structure 
which is shown on the left side of Figure 9. In contrast to this, 
in the case of increased ink volume condition, the ink jetted on 
a layer reaches to the beneath of the layer. This excess ink acts 
on the particles between the layers and makes the gap obscure. 
According to Nguyen Hoang Long [6], the liquid bridge force 
is also the function of the ink volume (3), where V, r0 are 
volume of ink, radius of particle, respectively. So that much ink 
weaken the binding force and contribute to decreasing the gap. 
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Let us finally show some photos of example parts 

produced by our methodology in Figure 12. In the order left to 
right, parts are made from SUS316L stainless steel, glass, and 
titanium. 

Conclusion  
In this study, we developed metal and ceramic particles 

coated with approximately 100 nanometer thickness of water 
soluble resin and quite a new concept of ink. This water based 
ink includes cross linking agent acts on the coated resin. But it 
does not include any binding ingredients. This ink may 
contribute to prevent nozzles of inkjet heads from clogging and 
to improve reliability of jetting the ink.  

Commercially available inkjet printer system which is 
used in mass production is utilized for producing green bodies 
in this experiments. Considerably less expensive binder jetting 
machines can be provided by using our low-cost mass 
production of printer system.  

Optimum combination of the materials are selected so as 
to achieve high strength of the green body. The degreasing 
process time will be shorter than ordinary powder injection 
molding processes (metal injection molding (MIM) or ceramic 
injection molding (CIM)) because total amount of organic 
substances is much less than these conventional processes.  

We also provide an overview of the mechanical and 
physical properties of 316L stainless steel parts produced by 
our novel process and device. The tensile strength is 
comparable to a MIM parts.  
        The methodology of fabricating parts and the properties of 
the processes such as powder characteristics, recoating 
parameters, and ink jetting conditions are mentioned. We also 
discuss the ink volume and behavior in the powder which 
impact on characteristics of the parts. As we showed, this 
method can be applied to various materials which are sinterable.  
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Figure 11 A microscopic schematic view of ink and particles behavior

Figure 12 Sintered part examples of 316L stainless steel (left), glass 

(center), and titanium(right) 
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