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Abstract 
Fused deposition modeling (FDM) printers, the more 

common type of desktop 3D printers, emit volatile gases and 
particulates that may deteriorate indoor air quality. The 
developed method for characterizing and quantifying emissions 
from an operating 3D printer measures fine particulate and 
volatile organic compound (VOC) concentrations over time 
using an environment controlled testing chamber. 

All tested printers emitted ultrafine particulates (UFP). 
Approximately 70% of the particulates released from the 
printers were less than 50 nm in diameter. Emitted UFPs 
increased in size over time by coagulating with other particles 
and condensation of printer-generated vapors. Chemical 
compositions of the released gases varied depending on the 
filament material. Volatile chemicals such as styrene and 
ethylbenzene were released from acrylonitrile butadiene 
styrene (ABS) filament. Caprolactam, originating from a nylon 
filament, was a predominant released gas. Though polylactic 
acid (PLA) filament is thought to be safer since it is 
biodegradable, PLA still released chemicals such as methyl 
methacrylate. Acetaldehyde and formaldehyde were released 
from all the studied filaments. ABS emitted more particles than 
PLA or nylon filaments.  

The extrusion nozzle temperature on the printer had the 
greatest effect on both particles and VOC emissions; the 
emissions increased as the temperature of the nozzle increased. 
Depending on the maker of the filaments, the total particle 
number emissions varied by a factor of 20. Filament colors had 
minor effects on emissions compared to other parameters 
studied.   

Introduction 
The 3D printer market is estimated to grow at a compound 

annual rate of 44% [1]. Among diverse 3D printers on the 
market, fused deposition modeling (FDM) 3D printers are 
relatively inexpensive and convenient to use, making them 
accessible to the general public. FDM 3D printers heat a 
filament to a semi-liquid state and deposit it to build a 3-
dimensional object by layers [2]. In particular, desktop-sized 
3D printers are often used in educational institutions (from 
primary schools to universities), design offices, libraries, and 
within homes [3]. Many of these locations have the potential to 
expose susceptible populations, such as children, to any toxic 
emissions generated in the printing process. It is known that 
commercial extrusion processing of thermoplastics generates 
both particles and volatile organic compounds (VOCs) [4], and 
some of the thermal decomposition products are recognized to 
be toxic [5, 6]. FDM 3D printers are potentially hazardous to 
operate in certain indoor environments. Due to the increasing 
usage of 3D printers and past experience with laser printer 
emissions, characterization of 3D printer emissions is necessary 
to assess human exposure and potential health impacts.  

A number of studies have recently reported emissions 
from commercial 3D printers [7, 8, 9, 10, 11], but the use of 
differing characterization methods make it difficult to compare 
and contrast factors influencing emissions reported amongst the 
previous studies. In order to address this limitation and to 
understand the factors that drive emissions, a standard testing 
and evaluation method is essential. Consistent characterization 
of particle emissions according to printer and filament 
combinations and operation conditions would then be possible 
and could be provided to consumers when considering 
purchasing these printers. 

Methods 
We have developed a methodology for characterizing and 

quantifying ultrafine particle (UFP) and VOC emissions from 
operating 3D printers that involves operation inside a specially 
designed environmental chamber. To investigate factors that 
influence 3D printer emissions, numerous combinations of 
printers and thermoplastic filaments were tested. The following 
printer parameters and their effects on UFP and VOC emissions 
were studied in a systematic way: filament type, filament 
brand, filament color, print object shape, extrusion nozzle 
temperature, printer platform temperature, and printer brand. 
Each 3D printer was tested in an environmental chamber 1 
cubic meter in volume that is specially designed for quantifying 
emissions in a well-mixed clean environment. Chamber 
operation and control measures used in this study complied 
with GREENGUARD Method and Laboratory Quality 
Requirements [12] and ASTM Standard D 6670 [13]. The 
chamber is made of stainless steel to minimize particle wall 
losses and contaminant adsorption. Air-flow through the 
chamber enters and exits through an aerodynamically designed 
air distribution manifold, also manufactured of stainless steel. 
Supply air to the chamber is stripped of particles, VOCs, 
formaldehyde, and other contaminants so that any contaminant 
background present in the empty chamber fall below strict 
levels. UFPs within the chamber were quantified with a range 
of online state-of-the-art particle sizers and counters. VOCs 
were collected on absorption columns for off line analyses. 

Results  
All tested printers emitted UFPs. Approximately 70% of 

the particulates generated from the printers were less than 50 
nm in diameter. With various combinations of different printers 
and filaments, a wide variability of particle emissions was 
observed. Typically, the number concentration spiked to 103 to 
106 particles/cm3, and then gradually decreased over time until 
the print ended. This pattern is seen in Figure 1, which shows 
number concentration over time for a 7 hour print using 
acrylonitrile butadiene styrene (ABS) filament. The 
instantaneous increase in number concentration to 1.4×106 

particles/cm3 (emissions of 1.4×1012 particles/min) is enough to 
exceed the criteria set for laser printers by Blue Angel 
(<3.5×1011/10 min) and likely results from homogeneous 
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nucleation of semi-volatile organic compounds (SVOCs) 
emitted near the extrusion nozzle. While number concentration 
starts decreasing, the mass concentration continues to increase 
(Figure 1), due to particle growth resulting from condensation 
of vapors on the newly formed particles. Initially, particles are 
in the size rage of 40 to 80 nm in diameter. Over time, the 
particles emitted from the printer interact through coagulation 
with particles generated earlier, and along with vapors 
continually being generated in the chamber by the printer, 
resulting in an increase in particle diameters to 100 to 250 nm. 
Despite the duration of print time, total particle emission was 
dominated by particles less than 50 nm, total surface area 
emission by particle sizes of 50 to 200 nm, and total mass 
emission by particles sizes of 100 to 300 nm.  

 

Figure 1. Particle number and mass concentrations for a 7 hour print job 
using ABS filament on a consumer 3D printer in a well mixed 1 cubic 
meter environmental test chamber with continuous addition of clean air, 
resulting in an air exchange rate of 1 chamber volume per hour. Print 
started at time 0 min. 

 
Filament coloring pigment showed only slight differences 

in particle and VOC emissions. However, filament brand had a 
large effect. For the various ABS brand filaments used on a 
single printer, brand differences resulted in larger differences 
between particle emissions than color differences. One brand 
had approximately ten times higher particle emissions than 
other ABS brands tested. Printer brand differences also 
contributed up to an order of magnitude difference in particle 
number emissions. One cause for this was differences in the 
manufacturer-set extrusion nozzle temperature for use with a 
given type of filament. Tests showed that total particle number 
emissions increased exponentially with nozzle temperature. 
This also accounted for differences in emissions when using 
different filament types. For example, ABS filament generally 
runs at higher extrusion nozzle temperatures than for polylactic 
acid (PLA) filament. ABS emitted more particles than PLA or 
nylon filaments. Printer platform temperature (plate the print 
object is built on) was found to only increase the mass of 
emitted particles, and not number of particles emitted. This is 
apparently due to the lower platform temperature, compared to 
the extrusion nozzle, was insufficient to produce SVOCs at a 
level needed for homogeneous nucleation of new particles. 
Instead, the released vapors condensed on the particles 
originally formed near the nozzle and increased the overall 
mass of the emitted particles.   

VOC emissions varied depending on the filament material. 
Formaldehyde and acetaldehyde, both listed as carcinogens, 
were detected in all three materials tested (ABS, PLA, and 
nylon). Nylon had the largest total VOC (TVOC) emission 
factor. Most of TVOC emission from nylon was caprolactam, 
which has an ocular and respiratory toxicity. Caprolactam has a 

low 8 hour chronic reference exposure level of 7 µg/m3 (1.4 
ppb) according to California’s Office of Environmental Health 
Hazard Assessment (OEHHA). Methyl methacrylate, second 
most abundant emission from PLA, is an irritant according to 
USEPA [14]. Lactic acid is known to be released but was not 
detected in our analysis since our analysis covers mostly 
greater than C6. Therefore, TVOC for PLA is likely to be 
underestimated. ABS had the largest number of identified 
VOCs. Styrene, released from ABS, is listed as a possible 
human carcinogen by International Agency for Research on 
Cancer. ABS emitted ethylbenzene, acetaldehyde, 
formaldehyde, and 4-vinylcyclohexene, which are recognized 
as carcinogens in the Safe Drinking Water and Toxic 
Enforcement Act of 1986, also known as California Proposition 
65, and/or Candidate Chemical List by California Department 
of Toxic Substances Control.  

Conclusion 
Potentially hazardous levels of UFP, up to 1.4 × 1012 

particles/min, were generated from tested desktop 3D printers. 
Chemicals unique to thermoplastics are released while 
operating the printer. Many are known or suspected irritants 
and carcinogens; therefore exposure to 3D printer emissions 
should be minimized. Nozzle temperature, filament type, 
filament and printer brand, and filament color all affect particle 
and VOC emissions, but to varying degrees. Yet, consumers 
cannot determine which printer or filaments are safer to operate 
with currently provided information, such as material safety 
data sheets (MSDS). Nozzle temperature, one parameter that 
users may have control over, should be set at a lower end of the 
suggested temperature range for a filament material to 
minimize direct exposure from 3D printer emissions. 3D 
printers should be used with caution in a well-ventilated area 
and special consideration given to potential exposures to 
susceptible populations. 
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