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Abstract 
This study targets to develop a 1-dimensional evaluation 

method of thermal conduction process around printing papers 

in DTP (Direct Thermal Printing) process. Our special 

attention was paid to investigate an evaluation method of 

thermal conductivity and contact thermal resistance of the 

printing papers. The evaluation of thermal conductivity of the 

printing papers is generally difficult because thermal 

conductivity of the papers is small like insulation. In addition, 

contact thermal resistance between the thermal head and the 

papers cannot be measured directly. Therefore, in this report, 

the clarification of the level of the thermal conductivity and the 

contact thermal resistance were targeted by using 1-

dimensional thermal conductivity measurement system. 

From the measurement of the equivalent thermal 

conductivity, the level of the difference of the thermal 

conductivity and the contact resistance of the paper was 

investigated. In addition, the optimum pressing pressure of the 

platen roller in order to minimize thermal contact resistance is 

clarified. 

Introduction  
Direct Thermal Printers (DTP) prints images by selectively 

heating thermal papers by using a thermal head that lots of dot 

heaters are mounted (Fig. 1). In recent years, a great demand of 

DTP to portable Point-Of-Sale (POS) terminals is surging. The 

printers for the POS terminals should be small in size while 

reducing the use of expendables such as toner cartridges. DTP 

printers can be miniaturized while decreasing the use of the 

expendables because DTP can print images by using only 

thermal papers and input heat from the thermal head. Therefore, 

DTP has been widely used for the printer of the POS terminals. 

Several researchers have been investigated about printing 

technologies and thermal design of DTP [2] – [5]. However, in 

order to prolong battery life of POS terminals, more decrease of 

a power consumption is strongly needed while improving 

printing quality and doing color printing. The printing quality 

and the power consumption of the DTP are dependent on 

thermal conduction between the thermal head and the platen 

roller through the printing paper. Therefore, an additional 

investigation about thermal conduction of DTP process may be 

effective for optimizing the structure of the DTP and the power 

consumption of the thermal head. Moreover, a shortening of a 

design period of productions are required in order to sustain  

 
 

Figure 1. Schematic of Direct Thermal Printing Process [1] 

and raise competitiveness of the products. A design framework 

called “1DCAE” has been brought to designer’s attention regardless 

of the branch of engineering [6]. Thermal resistance network 

analysis [2] has also been growing as a “1DCAE-based” rapid and 

accurate heat transfer prediction tool for thermal design of electronic 

equipment. An application of the methodology of the 1DCAE-based 

thermal design scheme to DTP may be effective to shorten 

production period and to optimize the design of the thermal head. 

However, in order to achieve the development of the faster and easy 

thermal design scheme for the DTP, more basic information about 

thermal conduction phenomena around the thermal head and the 

printing papers should be collected. 

 From these backgrounds, our study aims to investigate a 

relationship between printing process of DTP and thermal 

conduction phenomena in order to develop easy and accurate 

thermal design method for DTP [1] [7]. In our previous research, 

we especially investigated the relationship between temperature 

response of the printing paper when the paper was heated by the 

thermal heads and thermophysical properties using 3-

dimensional thermal conduction analysis. We have reported that 

thermal conductivity of the printing papers strongly affects 

transient temperature response when heating the papers. In order 

to design the optimum heating process by the thermal head, an 

accurate evaluation of thermal conductivity becomes important.  

However, an evaluation of thermal conductivity of the printing 

papers is generally difficult because thermal conductivity of the 

papers is small like insulation. In addition, contact thermal 

resistance between the thermal head and the papers cannot be 

measured directly. Therefore, an evaluation method of a level of 
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thermal conductivity of the papers and the contact resistance 

should be investigated.  

Therefore, in this report, the clarification of the level of the 

thermal conductivity and the contact thermal resistance were 

targeted by using 1-dimensional thermal conductivity 

measurement system [7] [8]. Through the measurement, the level 

of the difference of the thermal conductivity and the contact 

resistance of the paper was clarified. In addition, the optimum 

pressing pressure of the platen roller in order to minimize 

contact thermal resistance was investigated. 

Measurement System 
 Figure 2 shows the schematic of the 1-dimensional thermal 

conduction measurement system. The measurement system was 

developed by Tomimura et al. [8]. The test section consists of a 

test paper, two brass rods of 40 mm in diameter and length of 45 

mm, a film heater, a cooling block and an acrylic block as shown 

in Fig. 2. The test paper was mounted between two brass rods. 

By applying voltage to the film heater by using the power supply, 

the heat was generated. In addition, the cooling water was 

applied to the cooling block by using the thermostatic bath. By 

using the heater and the cooling block, temperature difference 

between the top of the upper brass rod and the bottom of the 

lower brass rod is caused and the heat flow is generated between 

the heater and the cooling block through the rods and the test 

paper. In order to evaluate temperature distribution in the rods, 8 

T-type sheathed thermocouples were prepared and temperature 

data was collected by using a data logger. The thermocouples 

were inserted into the holes of 0.5 mm in diameter and depth of 5 

m m  i n  t h e  r o d s .  T h e  t e s t  s e c t i o n 
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Figure 2. Schematic of 1-dimensional thermal conduction measurement 

system 
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Figure 3. Details of test section and measurement point of temperature 

was covered with polystyrene foam for insulating heat leak from 

the surface of the rods. The load was applied to the test section 

by using the principle of leverage. The pressing pressure to the 

upper rod was changed by changing the weight. The pressing 

pressure of the weight simulates a contact pressure of a platen 

roller. The balancing weight was mounted at the opposite end of 

the beam in order to obtain the no-loaded condition.  

Evaluation Method 
  Figure 4 shows an image of temperature distribution in the 

rods. As shown in Fig. 4, we can obtain one-dimensional 

temperature field. When the test section reach steady state, 

temperature difference between the lower surface of the upper 

rod (top surface of the test paper) and the upper surface of the 

lower rod Tp = Tp1 – Tp2 causes. Thermal resistance through the 

test paper R can be calculated by using the following formula: 

 
p

p

T
R

Q


  [W]        (1) 

Where Qp is the heat flow through the test paper. Here, R 

includes thermal conduction resistance in the paper and contact 

resistance on the paper surfaces. In this paper, we evaluated 

thermal conductivity as an equivalent value which includes both 

thermal conduction resistance and the contact resistance. The 

equivalent thermal conductivity was evaluated from thermal 

resistance as shown in Eq. (1).  
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Where p [W/(mK)] is the equivalent thermal conductivity of 

the test paper, tp [m] is the thickness of the paper and A [m2] is 

the cross-sectional area of the paper.  

 Here, the heat flow through the rod Q was evaluated by 

using the temperature change in the rods and the following 

Fourier’s law: 
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Where b [W/(mK)] is thermal conductivity of the brass and 

dT/dx [K/m] is the temperature gradient in the rods. p was 

preliminary obtained experimentally using the same rod that the 

length was 90 mm. By using temperature difference between 

adjacent  thermocouples  and the distance between the 

thermocouples. By using Eq. (1), the heat flow in each rod can 

be calculated individually. In this paper, the heat flow through  
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Figure 4. Evaluation method of temperature gradient in test section 
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the printing paper was evaluated by the average of the heat flow 

in the upper rod and the heat flow in the lower rod. 

 
upper lower

2
p

Q Q
Q


   [W]     (4) 

Where Qupper [W] is the estimated heat flow from temperature 

distribution in the upper rod and Qlower [W] is the estimated heat 

flow from temperature distribution in the lower rod. 

Test Papers 
 Table 1 shows the details of the test papers. In order to 

compare the difference of the thermophysical properties from the 

type of the papers, five types of papers were evaluated. In the 

experiment, the test paper was cut in a circular piece of 40 mm 

in diameter and was held between the brass rods. 

 In order to evaluate a reliability of the measurement system, 

thermal conductivity of the acrylic test piece (40 mm in diameter, 

thermal conductivity of 0.21 W/(mK)) was also measured as the 

preliminary experiment. 

Results and Discussions 
 Firstly, we will confirm the measurement result of thermal 

conductivity of the acrylic test piece. Figure 5 shows the 

measurement result of thermal conductivity of the acrylic test 

piece. Figure 5 also denotes the relationship between thermal 

conductivity and the thickness of the acrylic test piece. The 

measurement results and the nominal value were in good 

agreement regardless of the thickness of the acrylic test piece. 

From these results, we confirmed that the thermal conductivity 

of the acrylic test plate can be measured correctly.  

 Secondly, the result of the thermal conductivity measurement 

o f  e a c h  t e s t  p a p e r  w i l l  b e  d i s c u s s ed .  F igu r e  6  

 
Table 1. List of test paper 

Type of paper Cross section Thickness [mm]

0.055

0.065

0.100

0.200

0.300

Thermal paper

Inkjet paper

Xerographic paper

High grade paper

Thermal transfer paper

Weight [kPa]


p
  

 [
W

/(
m
K

)]

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0 20 40 60 80

Thermal
paper

Xerographic
paper

High grade
paper

Thermal
transfer paper

Inkjet paper

 

0

0.1

0.2

0.3

0 1 2 3 4

T
h
er

m
al

 c
o
n
d
u
ct

iv
it

y 
[W

/(
m
K

)]

Thickness of acryl [mm]
 

Figure 5. Relationship between measurement result of thermal 

conductivity of acrylic test piece and thickness. 

shows the measurement result of the equivalent thermal 

conductivity of the test papers. We confirmed that the equivalent 

thermal conductivity is dependent on the type of the test paper. 

This difference is caused by the structure of the test paper, that is 

an orientation of paper fibres, fibre density and the type of the 

coating on the paper. From Fig. 6, the simple structure paper 

such as thermal paper, xerographic paper and high grade paper 

show relatively lower thermal conductivity. In this case, the level 

of the value of the thermal conductivity was slightly similar to 

the nominal value of thermal conductivity of the paper (0.06 

W(mK)) [10]. On the other hand, the papers with the coating 

layer such as thermal transfer printer and inkjet paper show 

relatively higher thermal conductivity. Thermal conductivity of  
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Figure 6. Relationship between thermal conductivity of paper and pressing 

pressure 
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Figure 7. Relationship between thermal conductivity of paper and density 
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Figure 8. Relationship between thermal conductivity of paper and specific 

heat 
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coating materials (such as rasin) may be higher than the paper. 

Hence the equivalent thermal conductivity of these papers may 

become higher.  

 Here, Fig. 7 shows the relationship between the density of 

the paper and the thermal conductivity. Figure 8 denotes the 

relationship between the specific heat of the paper and the 

thermal conductivity individually. From these graphs, the causal 

relationship between other thermophysical properties and 

measured thermal conductivity was not actually proven. At 

present, the detailed thermophysical properties of additional 

materials expect for the paper are unknown. The further 

investigation about an evaluation of the effects of additional 

materials to thermophysical properties of the papers should be 

needed. 

 On the other hand, Fig. 6 also shows the relationship 

between the equivalent thermal conductivity and the pressing 

pressure. We can confirm that the pressing pressure of the 

weight also affects the equivalent thermal conductivity. When 

the pressing pressure increases, the test paper adheres well to the 

weight. Hence contact thermal resistance decreases with 

increasing the pressure. However, when the pressure value 

becomes 60 kPa or higher, the level of the contact resistance is 

not changed regardless of the type of the paper. We concluded 

that there is an optimum pressing pressure that can minimize the 

contact thermal resistance. In the range of our experiment, we 

conclude that the pressing pressure that the platen roller 

pressurizes the paper should be higher than 60 kPa. 

Summaries 
 In this research, we tried to evaluate the level of the thermal 

conductivity and the contact thermal resistance through the 1-

dimensional thermal conductivity measurement. We especially 

evaluated the equivalent thermal conductivity which includes 

both thermal conduction resistance and the contact resistance. 

The optimum pressing pressure of the platen roller was also 

investigated. In the range of our present investigation, we 

obtained undermentioned information. 

 The value of the equivalent thermal conductivity is 

dependent on the type of the printing paper. The equivalent 

thermal conductivity of simple structure papers that don’t have 

the coated layer has similar to the nominal value of the simple 
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The equivalent thermal conductivity is dependent on the 

pressing pressure. However, there is an optimum pressing 

pressure that can minimize the contact thermal resistance. In the 

range of our experiment, the optimum pressing pressure that the 

platen roller pressurizes the paper was 60 kPa. 

In our future works, an increase of the reliability of the 

thermal conduction measurement should be discussed. In addition, 

a concrete method of 1D-based thermal design for DTP process 

will be prepared by using our previous results. 
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