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Abstract
The out-of-gamut determination of images is very important

for color gamut mapping which plays an important role in cross-
media color reproduction. In this paper, aiming to achieve an
accurate out-of-gamut determination of image and exploit the
full potential of the reproduction device gamut, we propose a
out-of-gamut determination method of images based on
irregular segmentation which divides the color gamut into
several parts according to the chroma and lightness of colors in
CIELAB color space. First, the device color gamut is divided
into the high-chroma and the low-chroma color parts, and the
high-chroma parts are divided into more segments through the
CIELAB a*b* plane when calculating color gamut descriptors.
Then, in each segment the radiuses between the color points and
the center point are calculated. For the color points located in
the high-chroma parts, the color point with the biggest radius is
selected as the gamut boundary descriptor, and for that in the
low-chroma parts, if the corresponding outer segments are
empty, the color point with the biggest radius is selected as the
gamut boundary descriptor. Through the irregular segmentation
of gamut, the GBDs distribute more uniformly among the color
gamut surface than segment maximum method which treats all
colors in the same way wherever they are located in the gamut.
After that, determination of the out-of-gamut colors can be done
by calculating the position relationship between the source
colors and the GBDs. Additionally, GMAs would benefit from
this accurate out-of-gamut determination of image. GMAs based
on this out-of-gamut determination method validate the
promising results.

Introduction
In printing industry, color image reproduction technology

has developed within the last decade. The range of reproducible
colors varies with each image reproduction device, such as
printer and display. Color gamut is the entirety range of colors
that can be rendered by a device or that are contained in an
image[1-3]. When reproducing an accurate image across media
whose color gamuts are different, it is important to modify some
sources colors and conduct color transformation technology
from the original color gamut to destination color gamut , i.e.,
color gamut mapping algorithm (GMA). These facts raise the
problem of determining whether the source color is out of the
destination gamut in GMA, called the out-of-gamut
determination whose accuracy has great effect on the
performance of GMAs.

In the framework of the out-of-gamut determination of
image, the gamut boundary calculation of reproduction media is
necessary which can be constructed by gamut boundary
descriptors (GBDs). Most GMAs, such as HPminDE and
SGCK[4], adopt Segment Maximum Method[5] to calculate the
GBDs of devices in the process of out-of-gamut determination of
source colors. In Multispectral Gamut Mapping[6], Convex Hull

Algorithm[7] is used to determinate whether the source color is
out of the destination gamut. In order to give good results of the
out-of-gamut determination of image, it is important that the
GBDs is as accurate as possible.

At present, several algorithms of GBDs are often used in
the process of determining the out-of-gamut of images. The
convex hull of a set of points is the smallest convex set, and it is
a approximate surface which can realized by quickhull algorithm.
Using the convex hull we can get an approximation color gamut
which contains all the colors, the color gamut constructed by
convex hull algorithm always has larger volume, and also has no
concave parts in the constructed gamut surface[8], while there
are often gamut concavities where convex hull algorithm fails.
The modified convex hull algorithm proposed by
Balasubramanian and Dalal[9] is the evolution of convex hull
algorithm. In this method, the data of points is processed by a
gamma function to make the shape of original points like a
convex hull, then the convex hull algorithm is applied before a
inverse process to the GBDs of the convex hull algorithm.
Results show that with the proper parameters, the modified
convex hull algorithm can get an accurate gamut with concaves.
However, it is difficult to decide the proper parameters. The use
of alpha shape to construct color gamut boundary is first
proposed by Cholewo and Love[10]. The gamut is constructed
by a subset of Delaunay tessellations of color points which a
device can render. The biggest problem in using alpha shape
algorithm is that it is difficult to decide the proper α , though
Cazals[11] tries to use the dynamic determination of α to
improve the performance. The segment maximum algorithm is
presented by Morovic and Luo[12]. The color space is divided
into m-by-n segments, storing the color point with the maximum
radius in each segment as the gamut boundary descriptor. In
order to get the color gamut along arbitrary line of constant hue
angle, Morovic also develops the flexible sequential line gamut
boundary(FSLGB) method[5,12] which makes it easier to be
used in color gamut mapping. In this paper, we proposed a new
out-of-gamut determination method of image based on irregular
segmentation in order to get an accurate description of the out-
of-gamut of images.

In this paper, we proposed a new out-of-gamut
determination method of image based on irregular segmentation
in order to get an accurate description of the out-of-gamut of
images. The remainder of this article is organized as follows: in
the next section we describe the framework of out-of-gamut
determination of images, including gamut information extraction
and comparison and determination. In the subsequent section we
describe the principle of the irregular segmentation method.
Next we conduct the experiment and discuss the experimental
validation results, comparing the irregular method and segment
maximum algorithm as well as performing the color gamut
mapping based on the proposed out-of-gamut determination
method of images.
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The framework of out-of-gamut
determination of images

Gamut information extraction
The accuracy extraction of color gamut of devices or

images greatly affects the determination of the out-of-gamut of
images. The process of gamut information extraction consists of
two parts, sampling of inputs and transforming into working
color space.

For output devices, the gamut is the range of color stimuli
they can produce, and for input devices it is the range of color
stimuli among which they can distinguish differences[12]. The
gamut extraction of these devices requires having access to the
entire range of inputs to them. In this paper, we focus on the
output devices. For output devices the sampling of inputs needs
to access to the entire range of digital data that can be input to
them, such as RGB and CMYK digital data, then in order to get
the gamut information, transforming these sampling digital data
into working color space is necessary by measuring the color
represented by color values in working color space of each
corresponding output or calculating the color based on ICC
profile defining a mapping between two color encodings.

The number of samples from the sampling process is
closely related to the choice of the GBD algorithms’ parameter.
For example, for segment maximum algorithm, if only an
insufficient number are available, increasing m and/or n will not
increase accuracy of GBDs and is likely to result in false
concavity artifacts. As a rule of thumb, Morovic suggests that it
is good to use a uniform sampling with no less than 40 (and
ideally 60) samples per device color space dimension when
describing device gamuts[12]. Additionally the choice of
working color space of the gamut also has great effect on the
accuracy of gamut information extraction. The color space is
used to describe the color attributes, i.e. lightness, chroma, and
hue. Its perceptual uniformity is the most important properties.
While there isn ’ t a perfectly perceptually uniform color
space[13], various approximations have been proposed[14-17].
In this paper, CIE LAB color space is adopted in the out-of-
gamut determination of images.

Comparison and determination
After the gamut information extraction, it is essential to

compare the colors of image with the GBDs of the output device.
Firstly the gamut boundary of the extracting gamut information
of output device needs to be found using a GBD algorithm. Then
for each color of image, the two-dimensional gamut boundary at
its hue angle is calculated in the output device’s gamut by
intersecting the line connecting the two GBD points adjacent to
the image’s color with the hue angle plane. Whether the color
point of the image is out of the output device gamut can be
determined by comparing the color with the intersection of the
line connecting the color point and the point in the lightness axis
with the line gamut boundary. Through the comparison of the
position relationship between the colors of image and the GBDs,
the out-of-gamut part of the image can be obtained.

The irregular segmentation method
In the irregular segmentation method which improves the

segmentation technique of segment maximum algorithm, the
color space in divided by hue angles in hue plane and brightness
quantization in vertical.

In the hue plane, the color plane is divided into two parts
the high-chroma part and the low-chroma part by the indices β

(Figure 1), or more parts if a better accuracy is needed and of
course more time will be consumed. In the low-chroma part the
plane is divided by a hue angle α，and for the high-chroma part,
the hue angle is α/n (n is an integer), in this way the hue plane is
divided into [360(1+n)]/α segments.

Figure 1. The segment in the hue plane

In the vertical the plane is divided by the brightness
quantization h, then the brightness axis is divided into 100/h
segments(Figure 2).

Figure 2. The segment in the brightness plane

Thus the color space is divided into [36000(l+n)]/(αh)
segments. To calculate the GBDs of a set of colors from color
plate or samples of an output device, the segments are labeled
first, each inner segment(i.e. the segment in low-chroma part)
corresponds to n outer segments(i.e. the segment in high-chroma
part), and the GBDs can be stored in a matrix less than
[36000(l+n)]/(αh), because in some segments we use the inner
segments as the gamut boundary descriptor if no outer available.
In each segment the indices r which stands for the distance
between the color point and the point with same lightness in the
the L* axis is calculated. If the r of the outer segment is not 0,
then the color in the outer space with the maximum r is chosen
as the boundary of the hue angle in the plane, If the r of all outer
segments corresponding to the inner part is 0, then the color in
the inner space with the maximum r is chosen as the boundary.
In this way, the GBDs of the set of colors can be found.
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Experiments and results

Experimental data
In this paper, the gamut of JapanColor2001Coated is

selected as the destination gamut. Thus the sampling is
performing in the CMYK device color space whose entire range
is from 0 to 100 using uniform sampling method where the step
size is 2 (i.e. taking 514 samples). Then transforming the data
into working color space CIELAB is conducted based on
JapanColor2001Coated ICC profile. Finally using the irregular
segmentation method calculate the GBDs of the
JapanColor2001Coated’s gamut, the gamut is shown in Figure 3.
The images used is from Kodak Lossless True Color Image
Suite which are encoded in sRGB.

Figure 3. The gamut of JapanColor2001Coated

Comparison between the irregular method and
segment maximum algorithm

Segment maximum algorithm it treats the outer part and the
inner part in the same way without the consideration of the shape
of the real device color gamut which is bigger in the middle part
and smaller in the two ends across the L* axis, this leads to that
the segments is denser in the two ends and sparser in the
important middle part, and in the end the GBDs distribute non-
uniformly among the gamut surface. Additionally the description
accuracy of each segment is different, shown in the Figure 4.
The accuracy of gamut boundary in each segment can be
expressed by the length of arc across the gamut boundary
descriptor. The accuracy of segment OAB can be expressed by
arcAEB=ɑ’d1, the accuracy of segment OCD can be expressed
by arcCFD=ɑ’d2, where ɑ’ is the central angle and d is the
radius corresponding to the segment. The accuracy rate between
the two parts is d1/d2, as d1>d2 that is to say if a gamut
boundary descriptor is located in the inner part such as F, it will
be more accurate than color gamut boundary descriptor located
in the outer part such as E in describing color gamut.

In addition, the blind area of GBDs exists in the segment
maximum algorithm, as shown in Figure 5. Figure 5 shows the
first area of a rough device gamut boundary constructed by
segment maximum algorithm after interpolation on a*b* plane
in CIELAB color space. In this area the color space is divided
into 4 segments, in the gamut boundary determination, color H, I,
G, K are chosen as the gamut boundary descriptor of segment 1,
2, 3, 4. This leads to the colors in area 5, 6, 7, 8 which located in
the real gamut would be determined as the out-of-gamut colors
as their distances to the center point are less than those of the
gamut boundary descriptors, and this problem would be more
obvious as the distance increases.

Figure 4. The calculation error on a*b* plane

Figure 5. The rough gamut segmentation on a*b* plane

While in the irregular segmentation method which divided
the color gamut into several parts according to gamut shape.
First, the device color gamut is divided into the high-chroma and
the low-chroma color parts, and the outer part corresponding to
the inner part are further divided into n segments through the
CIELAB a*b* plane when calculating color gamut descriptors.
Thus in this way the segments in the outer part are n times more
than the inner part to avoiding the problem of segmentation non-
uniform and making the GBDs distribute uniformly among the
gamut surface to some extent.

Figure 6 is the GBDs distribution using segment maximum
algorithm and the irregular segmentation method. From Fig.6 the
distribution uniform of GBDs is improved using the irregular
segmentation method.

(a) The distribution of GBDs using the irregular segmentation method
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(b) The distribution of GBDs using segment maximum algorithm
Figure 6. The distribution of GBDs

Figure 7 shows the chroma distribution histogram of the
colors in the gamut of JapanColor2001Coated. Figure 7(a) is the
chroma distribution histogram of all samples, Figure 7(b) is the
chroma distribution histogram of GBDs using the irregular
segmentation method, Figure 7(c) is the chroma distribution
histogram of GBDs using segment maximum algorithm. From
Figure 7, the GBDs in high-chroma part are improved using the
irregular segmentation method.

(a) The chroma distribution histogram of all samples

(b) The chroma distribution histogram of GBDs using the irregular
segmentation method

(c) The chroma distribution histogram of GBDs using segment maximum
algorithm
Figure 7. The chroma distribution histogram of gamut

Results
Through performing the above framework of out-of-gamut

determination of images, Figure 8 shows the result of out-of-
gamut determination where white colors represent the out-of-
gamut colors of the image.

Figure 8. The process of out-of-gamut determination of image

In addition, the HPminDE color gamut mapping algorithm
is developed by using the proposed out-of-gamut determination
based on the irregular segmentation, the result is shown in
Figure 9.

(a) The original image

(b) The mapped image using HPminDE

(c) The mapped image using GMA based on the proposed out-of-gamut
determination method
Figure 9. The mapped images of different GMAs

At the same time, six images are mapped using the same
GMA, the original images are shown in Figure 10. The
evaluation of the images adopts the ranking method of
psychophysical experiment according to the CIE’s Guidelines
for the Evaluation of Gamut Mapping Algorithm comparing the
GMA based on the irregular segmentation method with
HPminDE and SGCK algorithms. The result is shown in Figure
11, here UHPminDE represents the GMA using the proposed
out-of-gamut determination based on the irregular segmentation.
From Figure 11, the quality of the mapped image using the
UHPminDE is improved.

out-of-gamut
determination
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Figure 10. The original images
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Figure 11. Z-score values of the evaluation of GMAs

Conclusion
We have introduced a new out-of-gamut determination

method of image based on irregular segmentation, and validated
it through the GMAs, the comparison between the segment
maximum method and the GBD algorithm based on irregular
segmentation was conducted, the results indicated that the gamut
boundary descriptors using the irregular segmentaion based
GBD algorithm were distributed uniformly to some extent
among the gamut surface and also guaranteed a good accuracy
especially in the saturated parts. Additionally, GMAs benefit
from this accurate out-of-gamut determination of image. GMAs
based on this out-of-gamut determination method validate the
promising results and improve the quality of mapped images.
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